• Title/Summary/Keyword: 철근콘크리트구조물

Search Result 1,425, Processing Time 0.024 seconds

A Study On Structural Behavior of Anchor Pile Precast Retaining Wall with Screw Shape Flange (나선형 플렌지가 설치된 앵커파일 프리캐스트 옹벽의 구조적 거동에 관한 연구)

  • Choi, Seung-Seon;Ahn, Tae-Bong;Kim, Woo-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.129-138
    • /
    • 2013
  • In this study, Anchor Pile Precast Retaining Wall (APC) with screw shape flange was investigated and the results were arranged for designing APC specifications. Since precast materials require special care when they are manufactured, carried or treated, more accurate design and analysis of optimized dimension are needed : thus moment distribution of front foot was checked. Through full-scale field test, form and optimal stiffening shape were obtained and through fracture test with real load, applicable load was reasonably calculated. Research result in this thesis could be used as guideline or standard of designing and constructing Anchor Pile Precast Retaining Wall with screw shape flange.

Failure Behavior and Separation Criterion for Strengthened Concrete Members with Steel Plates (강판과 콘크리트 접착계면의 파괴거동 및 박리특성)

  • 오병환;조재열;차수원
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.126-135
    • /
    • 2002
  • Plate bonding technique has been widely used in strengthening of existing concrete structures, although it has often a serious problem of premature falure such as interface separation and rip-off. However, this premature failure problem has not been well explored yet especially in view of local failure mechanism around the interface of plate ends. The purpose of the present study is, therefore, to identify the local failure of strengthened plates and to derive a separation criterion at the interface of plates. To this end, a comprehensive experimental program has been set up. The double lap pull-out tests considering pure shear force and half beam tests considering combined flexure-shear force were performed. The main experimental parameters include plate thickness, adhesive thickness, and plate end arrangement. The strains along the longitudinal direction of steel plates have been measured and the shear stress were calculated from those measures strains. The effects of plate thickness, bonded length, and plate end treatment have been also clarified from the present test results. Nonlinear finite element analysis has been performed and compared with test results. The Interface properties are also modeled to present the separation failure behavior of strengthened members. The cracking patterns as well as maximum failure loads agree well with test data. The relation between maximum shear and normal stresses at the interface has been derived to propose a separation failure criterion of strengthened members. The present study allows more realistic analysis and design of externally strengthened flexural member with steel plates.

A Proposal of Durability Prediction Models and Development of Effective Tunnel Maintenance Method Through Field Application (내구성 예측식의 제안 및 현장적용을 통한 효율적인 터널 유지관리 기법의 개발)

  • Cho, Sung Woo;Lee, Chang Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.148-160
    • /
    • 2012
  • This study proposed more reasonable prediction models on compressive strength and carbonation of concrete structure and developed a more effective tunnel safety diagnosis and maintenance method through field application of the proposed prediction models. For this study, the Seoul Metro's Line 1 through Line 4 were selected as target structures because they were built more than 30 years ago and have accumulated numerous diagnosis and maintenance data for about 15 years. As a result of the analysis of compressive strength and carbonation, we were able to draw prediction models with accuracy of more than 80% and confirmed the prediction model's reliability by comparing it with the existing models. We've also confirmed field suitability of the prediction models by applying field, the average error of an estimate on compressive strength and carbonation depth was about 20%, which showed an accuracy of more than 80%. We developed a more effective maintenance method using durability prediction Map before field inspection. With the durability prediction Map, diagnostic engineers and structure managers can easily detect the vulnerable points, which might have failed to reach the standard of designed strength or have a high probability of corrosion due to carbonation, therefore, it is expected to make it possible for them to diagnose and maintain tunnels more effectively and efficiently.

A Study on Evaluation of Floor Vibration for Steel Frame Modular Housing (철골 조립식주택 바닥판 진동 평가에 관한 연구)

  • Kim, Jong-Sung;Jo, Min-Joo;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.104-111
    • /
    • 2016
  • The steel frame modular housing of which the research and development has been actively carried out recently cannot be constructed through monolithic placement like the reinforced concrete deck of general structure due to the characteristics of construction method of production in the factory and assembly on the site. And floor vertical vibration and deflection caused by inhabitants' activities may become an important issue in the aspect of usability evaluation due to a decrease in the section size of member, a decrease in weight, and so on. Therefore, this study evaluated the vibration performance of deck by using formula of AISC Design Guide 11(hereinafter AISC formula) which was practically used in general for modules where a stud was and wasn't installed at the center of beam in the longitudinal direction in the modular housing to be studied, and examined the applicability of AISC formula through comparison with the results of analysis using a general-purpose analysis program. On the basis of this, a structural cause for an error to occur between analysis result and AISC formula in the deck of module in which a stud was installed was analysed, and measures for considering this were suggested. Besides, an analysis model with the variables of measures for improving the floor vibration performance of modular housing to be studied was established. And measures having excellent vibration performance and economic feasibility were suggested through vibration response analysis and economic evaluation.

Composition Changes in Cement Matrix of RC Column Exposed to Fire (화재에 노출된 RC기둥 시멘트 매트릭스의 구성성분 변화)

  • Kim, Jung-Joong;Youm, Kwang-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.369-375
    • /
    • 2014
  • This study examined the changes of microstructural compositions in cement matrix according to the depth from the surface of a reinforced concrete (RC) column exposed to fire. The RC column was exposed to a standard fire for 180 minutes. After the fire test, core samples passing through the column section were obtained. Using the core samples, the remaining fractions of calcium-silicate-hydrates (C-S-H) and calcium hydroxide in cement matrix at the surface, the depth of 40 mm and 80 mm and the center (175 mm) were examined using thermal gravimetric analysis (TGA) and X-ray diffraction analysis (XRDA). Using nuclear magnetic resonance (NMR) technique, the silicate polymerization of C-S-H in cement matrix was also evaluated. The experimental results indicated that the amount of C-S-H loss at the center of column experiencing the transferred fire temperature of $236^{\circ}C$ has been underestimated as the TGA results showed the highest C-S-H contents are located at the depth of 80 mm, where the transferred fire temperature is $419^{\circ}C$. Moreover, the destruction of silicate connections at the center was observed as similar as that at the depth of 40 mm, where the transferred fire temperature was $618^{\circ}C$. This might be attributed to the temperature changes during cooling time after the fire test was neglected. Due to the relatively low thermal conductivity of concrete, the high temperature, which can affect the change of microstructure in cements, will hold longer at the center of the column than other depth.

A Basic Study for Single Shell Support System of Railway Tunnel (철도 터널의 싱글쉘 지보시스템 적용에 관한 기초 연구)

  • Jung, Daeho;Jeong, Cahnmook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.39-48
    • /
    • 2016
  • In this study, it can be shortened tunnel construction work period by introducing a single-shell tunnel does not placing the secondary concrete lining, a global research trend, reduction of the cost of the lining placement and number of benefits that can ensure the safety of long-term tunnel with a single shell it was to study the tunnel method. First, we analyze the design and construction practices relating to delete lining of the domestic design and construction practices and a comprehensive analysis of the stability study found a rock in good condition interval (1~3 grades), we propose that the lining uninstalled. In the case of domestic changes on the ground floor is very heavy underfoot conditions many so tunneling method by single shell as ground conditions are good and one preferred the water points that apply in less soil, the soil health and poor sections (4~5 grades) reflecting with respect to the concrete lining that is expected reasonable.

Nonlinear Flexural Analysis of RC Beam Rehabilitated by Very-Early Strength Latex-Modified Concrete (초속경 라텍스개질 콘크리트로 보강된 RC보의 비선형 휨해석)

  • Choi, Sung-Yong;Yun, Kyong-Ku;Kim, Yong-Bin;Kang, Mun-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4635-4642
    • /
    • 2010
  • Latex modification of concrete provides the material with higher flexural strength, as well as high bond strength and reduced water permeability. One of the most advantages of the very early-strength latex-modified concrete (VES-LMC) could be the similar contraction and expansion behaviour to normal concrete substrate, which enable to ensure long-term performance. The purpose of this study was to parametric nonlinear flexural nonlinear analysis of RC beam rehabilitated by VES-LMC. The results were as follows; The flexural nonlinear analysis model of RC beam overlaid by VES-LMC in ABAQUS was proposed to predict the load-deflection response, interfacial stress, and ultimate strength. The proposed FE analysis model was verified by comparison of an experimental data and the FE analysis results. The FE analysis results showed that yield point as well as flexural stiffness increased as the depth increased; the stiffness of beam overall increased as the bond stiffness became larger; the bond strength between two different materials is a key factor in composite beam. A parametric study showed that an overlay thickness was a main influencing factor to the behavior of RC beam overlaid by VES-LMC.

Corrosion Behavior and Ultrasonic Velocity in RC Beams with Various Cover Depth (다양한 피복두께를 가진 RC 보의 부식 거동 및 초음파 속도)

  • Jin-Won Nam;Hyun-Min Yang;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.184-191
    • /
    • 2023
  • With increasing corrosion in RC (Reinforced Concrete) structures, cracks occurred due to corrosion products and bearing load resistance decreased. In this study, corrosion was induced through an accelerated corrosion test (ICM: Impressed Current Method) with 140 hours of duration, and changes in USV (Ultra-Sonic Velocity), flexural failure load, and corrosion weight were evaluated before and after corrosion test. Three levels of cover depth (20 mm, 30 mm, and 40 mm) were considered, and the initial cracking period increased and the rust around steel decreased with increasing cover depth. In addition, the USV linearly decreased with decreasing cover depth and increasing amount of corrosion. In the flexural loading test, the bending capacity decreased by more than 10% due to corrosion, but a clear correlation could not be obtained since the corrosion ratio was small, so that the effect of slip was greater than that of reduced cross-sectional area of steel due to corrosion. As cover depth increased, the produced corrosion amount and USV changed with a clear linear relationship, and the cracking period due to corrosion could be estimated by the gradient of the measured corrosion current.

FE Analysis on the Structural Behavior of a Double-Leaf Blast-Resistant Door According to the Support Conditions (지지조건 변화에 따른 양개형 방폭문의 구조거동 유한요소해석)

  • Shin, Hyun-Seop;Kim, Sung-Wook;Moon, Jae-Heum;Kim, Won-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.339-349
    • /
    • 2020
  • Double-leaf blast-resistant doors consisting of steel box and slab are application-specific structures installed at the entrances of protective facilities. In these structural systems, certain spacing is provided between the door and wall. However, variation in the boundary condition and structural behavior due to this spacing are not properly considered in the explosion analysis and design. In this study, the structural response and failure behavior based on two variables such as the spacing and blast pressure were analyzed using the finite element method. The results revealed that the two variables affected the overall structural behavior such as the maximum and permanent deflections. The degree of contact due to collision between the door and wall and the impact force applied to the door varied according to the spacing. Hence, the shear-failure behavior of the concrete slab was affected by this impact force. Doors with spacing of less than 10 mm were vulnerable to shear failure, and the case of approximately 15-mm spacing was more reasonable for increasing the flexural performance. For further study, tests and numerical research on the structural behavior are needed by considering other variables such as specifications of the structural members and details of the slab shear design.

Seismic Performance of Concrete Masonry Unit (CMU) Infills in Reinforced Concrete Moment Framing System (철근콘크리트 모멘트 골조시스템에서 조적 끼움벽의 내진성능)

  • Hong, Jong-Kook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • The masonry infill walls are one of the most popular components that are used for dividing and arranging spaces in building construction. In spite of the fact that the masonry infills have many advantages, the system needs to be used with caution when the earthquake load is to be considered. The infills tend to develop diagonal compression struts during earthquake and increase the demand in surrounding RC frames. If there are openings in the infill walls, the loading path gets even complicated and the engineering judgements are required for designing the system. In this study, a masonry infill system was investigated through finite element analysis (FEA) and the results were compared with the current design standard, ASCE 41. It is noted that the equivalent width of the compression strut estimated by ASCE 41 could be 32% less than that using detailed FEA. The global load resisting capacity was also estimated by 28% less when ASCE 41 was used compare to the FEA case. Rather than using expensive FEA, the adapting ASCE 41 for the analysis and design of the masonry infills with openings would provide a good estimation by about 25% conservatively.