• Title/Summary/Keyword: 철근콘크리트구조물

Search Result 1,425, Processing Time 0.028 seconds

Seismic Retrofitting of Existing Reinforced Concrete Columns Using Binding Column Method (외부부착형 BCM공법으로 보강된 철근콘크리트 기둥의 내진보강)

  • Hur, Moo-Won;Park, Tae-Won;Lee, Sang-Hyun;Park, Hyun-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.119-126
    • /
    • 2022
  • This study proposed a BCM(Binding Column Method) that can reinforce the insufficient seismic force of piloti buildings that are not designed for seismic resistance. In addition, 4 reinforcement specimens and 1 reference specimen were manufactured for the proposed seismic reinforcement method. The effect of improving seismic performance before and after reinforcement was examined through repeated loading tests. As a result of experiment, seismic reinforcement specimen with BCM system showed hysteretic characteristics of a large ellipse with great energy dissipation ability and increased strength and stiffness, while reference specimen showed rapid reduction in strength and brittle shear failure column. In addition, it can be seen that the reinforcing effect is improved as the gap is narrow, the torque is large, and the thickness of the L-shaped steel sheet is thicker. The SC4 specimen showed the best seismic performance reinforcement effect.

The Study of Reinforcement through the Nonlinear Static Analysis and Inelastic Seismic Performance Evaluation in School Building (학교건물에 있어서 비탄성해석 및 비선형 정적해석을 통한 내진성능 평가에 따른 보강 연구)

  • Lee, Ho;Kwon, Young-Wook;Kim, Hong-Do
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.55-63
    • /
    • 2012
  • This study is about earthquake-proof reinforcement through structural function evaluation of an school building. The purpose of this study is to comparatively analyze structure reinforcement measures in consideration of safety and usability through structural function evaluation of school buididng, to offer rational measures for earthquake-proof function and to provide help in maintaining safe structures against earthquake. For this purpose, was selected for this study as an existing school building, earthquake-proof function evaluation was conducted, and measures to reinforce earthquake-proof function was offered. As for the research method, the first and the second earthquake-proof function evaluations were conducted which is an existing reinforced concrete school building. Through the abovementioned methods, earthquake-proof function evaluation were conducted, the results were analyzed and the measure to reinforce earthquake-proof function were offered(Steel damper, Carbon plate stiffeners). The offered measure to reinforce earthquake-proof function was applied to the subject structure, and comprehensive results were derived from earthquake-proof function evaluation regarding before and after earthquake-proof function reinforcement.

Study on the Performance of New Shear Resistance Connecting Structure of Precast Member (프리캐스트 부재의 새로운 전단저항 연결체의 성능에 관한 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Kim, Seong-Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.147-154
    • /
    • 2008
  • The purpose of this study is to critically evaluate the structural performance of an innovative new shear resistance connecting structure of precast member. Joints such as shear resistance connecting structure require special attention when designing and constructing precast segmental structures. An experimental and analytical study was conducted to quantify performance measures and examine one aspect of detailing for developed shear resistance connecting structure. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. A joint element is used to predict the inelastic behavior of the joints between segmental members. Future work by the authors will do a model test of precast segmental prestressed concrete bridge columns with this shear resistance connecting structure, and examined both the structural behavior and seismic performance.

An Experimental Study on the Flexural Behavior of RC Beams Strengthened with NSM and EBR CFRP Strips (표면매입 및 외부부착 탄소섬유판으로 보강된 RC보의 휨 거동에 관한 실험 연구)

  • Lim, Dong-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.601-609
    • /
    • 2008
  • The purpose of this study is to investigate the flexural strengthening effectiveness for the beams combined reinforced with NSM CFRP strips and EBR CFRP strips. To accomplish this objective, a total of nine concrete T beams were tested. From this study, it is found that the flexural stiffness and strength of the beams combined reinforced with NSM and EBR strips were significantly improved compared to the beams strengthened only with NSM CFRP strip. The maximum increase of flexural strength was 347% compared to the beam without CFRP strip. Failure of the beam combined reinforced with NSM and EBR strips (T shape) is initiated by debonding of EBR strips attached on the bottom face, and it was succeeded a part of separatio-n of NSM strips along the longitudinal direction and secondly failure of NSM strips was occurred, eventually sudden explosive failure with the separation of concrete cover in the shear region. This result shows that the NSM and EBR strips have good combination to resist applied load and the combined reinforcement with NSM and EBR strips can redistribute appropriately the total stress subjected concrete beam to the EBR and NSM strips.

Flexural Behavior of RC Beams Strengthened with Steel Strand and Carbon Fiber Sheet (강연선 및 탄소섬유쉬트로 보강된 철근 콘크리트 보의 휨거동 특성)

  • 양동석;박선규;이용학
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.216-222
    • /
    • 2002
  • With deterioration of the nation's infrastructure comes the growing, need for effective means of rehabilitating structures. Possibly one for the most challenging tasks is to upgrade the overall capacity of concrete structure. Therefore, considerable efforts are still being made to develop new construction materials. Rehabilitation of damaged RC structures occasionally requires the removal and replacement of concrete in the tension zone of the structural members. Typical situation where the tension zone repair is necessary is when the concrete in the tension zone in beams or slabs has spalled off as a result of corrosion in the bottom reinforcing bars or due to extensive fire. The rehabilitation of such conditions normally involves the removal of the concrete beyond the reinforcement bars, cleaning or replacing the tensile bars and reinstatement of concrete to cover the steel bars the original shape and size. This study focused on the flexural behavior of reinforced concrete beams strengthened by steel strand and carbon fiber sheet in the tension zone. The properties of beams are 15$\times$25 cm rectangular and over a 200cm span. Test parameters in this experimental study were strengthening methods, jacking volume, the number of sheet. We investigated the flexural behavior of simply supported RC beams which are strengthened with the carbon fiber sheet, monotonic loads. Attention is concentrated upon overall bending capacity, deflection, ductility index, failure mode and crack development of repaired and rehabilitated beams.

Development of Removable Deck Plate Formwork System for Beams (데크플레이트를 활용한 탈형 보-데크 거푸집 시스템 개발)

  • Jung, Joo-Hong;Jung, Hyung-Suk;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.60-67
    • /
    • 2021
  • In lately, it's been developed and used a system of using deck plates as formwork in order to solve various problems caused by conventional formwork system. This system is more economical and has higher constructability than the conventional system by permanently embedding most of deck plates into the members. However, for this kind of embedded deck plates formwork system, it's been reported that it is difficult to verify filling of concrete in members like beams with narrow width and complicated rebar arrangement. In addtion, there are several problems such as corrosion of deck plates in terms of constructability and maintenance. Therefore, in this study, it is attempted to develop a removal-deck plate formwork system for beams by removing deck plates after concrete curing. The system consists of a deck plate module that acts as form, a frame preventing deformation by concrete lateral pressure, stirrup frame, and connector that combines these. As a result of this research, it is verified that it has higher constructability, efficiently prevents deformation caused by concrete lateral pressure and could be easily removed in the developed formwork system.

CO2 Evaluation of Reinforced Concrete Column Exposed to Chloride Attack Considering Repair Timing (보수시기를 고려한 염해에 노출된 콘크리트 교각의 탄소량 평가)

  • Kim, Seong-Jun;Kim, Young-Joon;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In this paper, $CO_2$ amount is evaluated considering repairing timing and unit $CO_2$ amount per repair method including various stage of material manufacturing, moving, and construction. Four mix proportions with mineral admixture are considered and repairing timing/numbers are simulated based on the results from Life 365 which can handle chloride penetration. Furthermore two repair methods (simple cover concrete replacement and replacement with electro-chemical method for removing chloride content) are considered and the related $CO_2$ emissions are evaluated. From the study, the case with high W/B (water to binder ratio) ratio shows smaller $CO_2$ emission in construction stage but it increases more rapidly with increasing number of repair. $CO_2$ emission considering electro-chemical method greatly increases with the increasing unit $CO_2$ for the repairing method. The numbers of jumping step (repairing number) are evaluated to be 9 for WB37-OPC, 18 for WB50-OPC, 4 for WB40-SG, and 7 for WB47-SG respectively. RC structures with the longer maintenance free period are evaluated to be advantageous for saving $CO_2$ emission.

Improvement of Sand Dam Design for Safety and Increased Water Storage (안전과 저수량 증대 측면의 샌드댐 설계 개선 방안)

  • Seo, Dong Gun;Suh, Jong Won;Chae, Jeong Uk;Kim, Sung Jun;Yun, Tae Sup;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.279-288
    • /
    • 2020
  • Sand dams are formed by installing beams across rivers and filling the secured space with water and a permeable material, such as sand, which stores the water in available pore space. These structures have mainly been reported in Kenya, Africa. This study proposes a sand dam design that improves structural safety and water intake. First, to increase the stability of the concrete wall of the dam, steel barbed wire connections are proposed for construction. Second, by using geotextile fabrics, evaporation may be reduced from 45% to 8%, and horizontal permeable discharge could be reduced markedly, therefore improving water storage capabilities. In addition, the water intake increased by ~2.4 times that of the previous design. Third, filtration efficiency is improved by selecting a sedimentary site for improved water quality. Finally, the installation of a tensiometer is suggested for monitoring the sand dam.

Evaluation of Chloride Diffusion Characteristics in Concrete with Fly Ash Cured for 2 Years (2년 양생된 Fly Ash 콘크리트의 염화물 확산 특성 평가)

  • Yoon, Yong-Sik;Hwang, Sang-Hyeon;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.8-15
    • /
    • 2019
  • When RC(Reinforced Concrete) structures are exposed to harsh environment, deterioration phenomenon occurs, and the corrosion in rebar due to chloride intrusion is known as representative deterioration, so called chloride attack. In this paper, chloride resistance performance of 2 years aged concrete is evaluated considering 3 levels of water to binder ratio(0.37, 0.42, and 0.47) and 2 levels of substitution ratio of fly ash(0% and 30%). Accelerated chloride diffusion coefficient tests referred to Tang's method, total passed charge tests referred to ASTM C 1202, and compressive strength tests referred to KS F 2405 are performed. With adaptation of the previous test results and the results from this study, time-dependent chloride diffusion characteristics are analyzed for each concrete. The FA(Fly Ash) concrete has higher chloride resistance performance than OPC(Ordinary Portland Cement) concrete. According to the evaluation standard of ASTM C 1202, the FA concrete has "Moderate" grade after 49 days while OPC concrete does "Moderate" grade after 365 days. As the results of time-parameter for chloride diffusion, OPC concrete and FA concrete show the decreasing behavior of time-parameters with increasing water to binder ratio. Also, FA concrete has 1.57~2.74 times of time-parameter than OPC concrete. That's cause is thought that the time-parameter indicates the gradient of decreasing of diffusion coefficient. FA concrete has higher time-parameters than OPC concrete by pozzolanic reaction of FA.

Technique to Evaluate Safety and Loaded Heavy Equipment Grade in RC Building during Demolition Work (RC건축물 해체공사의 안전성 평가기법 및 탑재장비 등급 제안)

  • Park, Seong-Sik;Lee, Bum-Sik;Kim, Hyo-Jin;Sohn, Chang-Hak
    • Land and Housing Review
    • /
    • v.2 no.2
    • /
    • pp.195-204
    • /
    • 2011
  • During mechanical demolition of RC structures, weights of dismantling equipment and demolition waste of building are applied to unexpected load which did not be considered during the design of structural member. Nevertheless, the loading of dismantling equipment and dismantling process are mainly dependent on field managers' field workers' or experiences without considering safety of structural member by a structural engineer. It is urgently required that reflecting actual circumstance of mechanical demolition, safety evaluation method to evaluate the safety and the guideline for appropriate capacity of structural member to support dismantling equipment weight, be provided. Through site investigation and questionnaire on field workers, this paper proposed demolition waste load, load factor, strength reduction factor, and so on. These are essential to safe evaluation of a building, ready to demolition. Considering actual circumstance of mechanical demolition, safety evaluation method of building and design method of slab and beam was suggested to a dilapidated building. An capability to loading of dismantling equipment was proposed, applied to RC slab and RC beam. Therefore, the suggested safety evaluation method and the guideline for an capability to loading of dismantling equipment weight can reasonably evaluate the capacity of structural member in demolition and use effectively as increasing efficiency and improving safety of demolition through proper management of dismantling equipments.