• Title/Summary/Keyword: 철근콘크리트건물

Search Result 258, Processing Time 0.027 seconds

Experimental Evaluation of Bi-directionally Unbonded Prestressed Concrete Panel Blast Resistance Behavior under Blast Loading Scenario (폭발하중 시나리오에 따른 2방향 비부착 프리스트레스트 콘크리트 패널부재의 폭발저항성능에 대한 실험적 거동 평가)

  • Choi, Ji-Hun;Choi, Seung-Jai;Cho, Chul-Min;Kim, Tae-Kyun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.673-683
    • /
    • 2016
  • In recent years, frequent terror or military attack by explosion, impact, fire accidents have occurred. Particularly, World Trade Center collapse and US Department of Defense Pentagon attack on Sept. 11 of 2001. Also, nuclear power plant incident on Mar. 11 of 2011. These attacks and incidents were raised public concerns and anxiety of potential terrorist attacks on major infrastructures and structures. Therefore, the extreme loading researches were performed of prestressed concrete (PSC) member, which widely used for nuclear containment vessel and gas tank. In this paper, to evaluate the blast resistance capacity and its protective performance of bi-directional unbonded prestressed concrete member, blast tests were carried out on $1,400{\times}1,000{\times}300mm$ for reinforced concrete (RC), prestressed concrete without rebar (PSC), prestressed concrete with rebar (PSRC) specimens. The applied blast load was generated by the detonation of 55 lbs ANFO explosive charge at 1.0 m standoff distance. The data acquisitions not only included blast waves of incident pressure, reflected pressure, and impulse, but also included displacement, acceleration, and strains at steel, concrete, PS tendon. The results can be used as basic research references for related research areas, which include protective design and blast simulation under blast loading.

Bending Tests of H steel-Partial Concrete Incased Composite Beams (H형강-국부 콘크리트 합성보지 휨 실험)

  • Kim, Sung-Hoon;Kim, Dae-Kon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.77-85
    • /
    • 2005
  • After the collapse of the World Trade Center in september 11, 2001 and due to the frequent fire-caused damages of buildings during earthquake attacks, social concerns have been increased for the fire proof of the structural members of buildings. Recently, researches have been conducted to improve the fire resistance for building members not by the traditional ways but by utilizing the fire-resisting characteristics of reinforced concrete and structural characteristics of H-steel. In this paper, laboratory tests were conducted in room temperature to investigate the structural performance of the composite beams, which were developed to improve the fire resistance, comprising with concrete incasement between upper and lower flanges of H steel. From the experimental results, the displacement ductility factors of $6\~8$ were obtained. The difference of flexural behavior ol H steel-partial concrete incased composite beams with various composite details seems to be minor. The amount of longitudinal rebars is the most influential factor for the flexural strength of the composite beams. Therefore, if this type of composite beams are selected for designing a building located in moderate seismic lone, identical beam size could be used in several stories of the building.

Non-linear Time History Analysis of Piloti-Type High-rise RC Buildings (필로티형 고층 RC건물의 비선형시간이력해석)

  • Ko, Dong-Woo;Lee, Han-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.35-43
    • /
    • 2009
  • Two types of piloti-type high-rise RC building structures having irregularity in the lower two stories were selected as prototypes, and nonlinear time history analysis was performed using OpenSees to verify the analysis technique and to investigate the seismic capacity of those buildings. One of the buildings studied had a symmetrical moment-resisting frame (BF), while the other had an infilled shear wall in only one of the exterior frames (ESW). A fiber model, consisting of concrete and reinforcing bar represented from the stress-strain relationship, was adapted and used to simulate the nonlinearity of members, and MVLEM (Multi Vertical Linear Element Model) was used to simulate the behavior of the wall. The analytical results simulate the behavior of piloti-type high-rise RC building structures well, including the stiffness and yield force of piloti stories, the rocking behavior of the upper structure and the variation of the axial stiffness of the column due to variation in loading condition. However, MVLEM has a limitation in simulating the abrupt increasing lateral stiffness of a wall, due to the torsional mode behavior of the building. The design force obtained from a nonlinear time history analysis was shown to be about $20{\sim}30%$ smaller than that obtained in the experiment. For this reason, further research is required to match the analytical results with real structures, in order to use nonlinear time history analysis in designing a piloti-type high-rise RC building.

Shrinkage Stress Analysis of Concrete Slab in Multi-Story Building Considering Construction Sequence (시공단계를 고려한 고층건물 콘크리트 슬래브의 건조수축 응력해석)

  • 김한수;정종현;조석희
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.457-465
    • /
    • 2001
  • Shrinkage strains of concrete slab in multi-story building are restrained by structural members such as columns or walls, then can induce cracks due to excessive shrinkage stress over tensile strength of member. In this study, a shrinkage stress analysis method of concrete slab in multi-story building considering not only material properties such as shrinkage, creep and reinforcement effect but also construction sequence is proposed. Tensile stresses of slab due to shrinkage are calculated by converting shrinkage strains into equivalent temperature gradients, creep that can release shrinkage stress can be considered by replacing the modulus of elasticity of concrete, Ec , to the effective secant modulus of elasticity of concrete, E$\_$eff/ Reinforcements are also considered by modeling them as equivalent beam elements in FEM program. Results of step by step analysis reflecting construction sequence summed up to calculate stresses of the whole building considering that shrinkage stresses of the building come from the difference of shrinkage between i-th floor and (i-1)-th floor, named as effecitive shrinkage, and it can be varied by construction sequence. The results of 10-story example building show that shrinkage stresses of lower floors are greater than those of upper floors, that is, stresses of lower floors(1∼2FI.) exceed modulus of rupture of concrete, but stress ratios of higher floors are in the range of 27.9∼92.8%.

Seismic Performance of Reinforced Concrete Shear Wall Buildings with Piloti (필로티를 갖는 철근콘크리트 전단벽식 건물의 내진성능)

  • Kwon Young-Wung;Kim Min-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.587-594
    • /
    • 2005
  • The purpose of seismic design is to ensure the serviceability of buildings against earthquake, which might be occurred during the service life of buildings, and to minimize the loss of life by preventing their failure under strong earthquake. The lack resistance of walls resulting from a tendency toward high-rise apartment buildings with shear walls and use of piloti would lead to a concentration of inelastic behaviors in their weak story. In this study, the seismic performance of reinforced concrete shear wall buildings haying piloti was analyzed by using the evaluation techniques which was proposed by FEMA 273 and ATC-40. The results from comparison with these two techniques are summarized as follows.; The results of elastic analysis method for seismic performance evaluation show that the effect of piloti and building height decrease performance index. In case of shear wall building, the state of insufficient shear stress governs their overall performance and it becomes evident in the case of the buildings with more than 25 stories. For the buildings of piloti, the change of mass, weak story, as well as insufficient shear stress, decrease the performance index rapidly compared with the performance index of the buildings without piloti. The results, obtained from the nonlinear static analysis using capacity spectrum method, indicate that the performance Point increases for the structure having Piloti and high story. Also, deformation limits of buildings satisfy the allowable criteria at the life safety level, but the immediate occupancy level is exceeded in buildings which have more than 25 stories.

Inelastic Dynamic Demands of a RC Special Moment Frame Building (철근 콘크리트 특수 모멘트 골조 건물의 비탄성 동적 요구값)

  • Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.11-19
    • /
    • 2005
  • Seismic design of a building is usually performed by using the linear static procedure. However, the actual behavior of the building subjected to earthquake is inelastic and dynamic in nature. Therefore, inelastic dynamic analysis is required to evaluate the safety of the structure designed by the current design codes. For the validation, a RC special moment resisting frame building was chosen and designed by IBC 2003 representing new codes. Maximum plastic rotation and dissipated energy of some selected members were calculated for examining if the inelastic behavior of the building follows the intention of the code, and drift demand were calculated as well for checking if the building well satisfies the design drift limit. In addition, the effect of including internal moment resisting frames (non lateral resisting system) on analyses results was investigated. As a result of this study, the building designed by IBC 2003 showed the inelastic behavior intended in the code and satisfied the design drift limit. Furthermore, the internal moment resisting frames should be included in the analytical model as they affect the results of seismic analyses significantly.

Vibration Characteristics of a Three-Story Reinforced Concrete Building Before and After Damage (3층 철근콘크리트조 건물의 손상전후의 진동특성)

  • Yoon, Sung-Won;Park, Yong;Ji, Jung-Hwan;Lim, Jae-Hwi;Jang, Dong-Wo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.3
    • /
    • pp.59-66
    • /
    • 2009
  • Dynamic characteristics such as frequency and damping ratio in the ambient state of building has been progressed in domestic and foreign. However, there has not been any deep research of dynamic characteristics of full-scale structure using vibration measurement of the building damaged up to failure. Dynamic characteristics of three-story reinforced concrete building was evaluated before and after it was damaged by using a actuator. Dynamic characteristics is reviewed and compared with previous study. Ambient vibration and human excitation test were applied. After 120mm horizontal displacement by actuator, frequency of long and short direction is reduced to 34.3%, 33.7% and damping ratio is reduced to 36.5%, 19.5% respectively.

  • PDF

Seismic Retrofit of Old Reinforced Concrete Buildings (노후 RC 건물의 내진 보강)

  • Huynh, Chanh Trung;Park, Jong-Yeol;Kim, Jin-Koo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.150-153
    • /
    • 2010
  • 본 논문에서는 비내진 설계된 철근콘크리트 골조로 이루어진 저층의 노후공동주택의 내진성능을 향상시키기 위한 구조물의 보강방법에 대해 연구하였다. 이를 위하여 비선형 정적 해석과 시간 이력 해석을 수행하여 추가되는 철골 모멘트골조와 가새의 내진보강 효과를 검증하였다. 해석결과에 따르면 $H150{\times}150{\times}6{\times}8$로 구성된 철골 모멘트골조는 탄성구간에서는 하중의 약 1%, 구조물이 항복한 이후, 최대 3.5%까지 하중을 부담하여 자체적으로 지진하중에 대한 저항 성능은 크지 않았다. 그러나 철골 모멘트골조와 가새를 동시에 사용함으로써 접합부의 조기 파괴를 방지하고 구조물의 내진성능을 큰 폭으로 증진시킬 수 있는 것으로 나타났다.

  • PDF

Analysis of Floor Slab and Support for the Shortening of Construction Time in High-Rise Wall-Type Apartment Building (고층벽식구조 아파트에서 골조공사 공기단축을 위한 바닥 슬래브 및 지주의 해석)

  • Kim, Young-Chan;Kwon, Ki-Sang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.141-147
    • /
    • 2002
  • 국내 주거의 주종인 아파트의 구조형식은 벽식 철근콘크리트조로 경제성 때문에 대부분 고층으로 지어지고 있다. 철근 콘크리트구조 건물을 구체공사비중 상당부분이 거푸집공사에 투입되고 있다. 구체공사의 공기(工期)는 층당 소요일수로 산정할 수 있는데 공사비 절감 및 공기단축을 통한 시공효율상의 향상을 위해서는 지주시스템의 효율적인 전용(轉用)이 필수적이라 할 수 있다. 본 연구에서는 벽식구조 아파트의 현장조사를 토대로, 현재 사용되고 있는 지주시스템 및 바닥슬래브에 대한 응력해석을 수행하고, 이를 분석하여 공기단축의 가능성을 검토하였다.

Computational Optimization for RC Columns in Tall Buildings (초고층 철근콘크리트 기둥의 전산최적설계 프로세스)

  • Lee, Yunjae;Kim, Chee-Kyeong;Choi, Hyun-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.401-409
    • /
    • 2014
  • This research develops tools and strategies for optimizing RC column sections applied in tall buildings. Optimization parameters are concrete strength and section shape, the objective function for which is subject to several predefined constraints drawn from the original structural design. For this purpose, we developed new components for StrAuto, a parametric modeling and optimization tool for building structure. The components receive from external analysis solvers member strengths calculated from the original design model, and output optimized column sections satisfying the minimum cost. Using these components, optimized sections are firstly obtained for each predefined concrete strength applied to the whole floors in the project building. The obtained results for each concrete strength are comparatively examined to determine the fittest sections which will also result in the fittest vertical zoning for concrete strength. The main optimization scenario for this is to search for the vertical levels where the identical optimized sections coincide for the two different concrete strengths in concern, and select those levels for the boundaries where a concrete strength will be changed to another. The optimization process provided in this research is a product of an intensive development designed for a specific member in a specific project. Thus, the algorithm suggested takes on a microscopic and mathematical approach. However, the technique has a lot of potential that it can further be extensively developed and applied for future projects.