• Title/Summary/Keyword: 철근커플러

Search Result 26, Processing Time 0.019 seconds

An Experimental Study of Tension Properties on New Developed Up-Set Coupler (Up-Set Coupler 이음철근의 인장특성에 대한 실험적 연구)

  • Sim, Jong-Sung;Park, Cheol-Woo;Kang, Tae-Sung;Kim, Tae-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.109-115
    • /
    • 2008
  • As structures are getting super-rise and large-sized, introducing the construction methods such as prefabrication of bar-meshes and complex method are being actively discussed to pursue the high quality of reinforced concrete, the simplification of field works, and the reduction of duration, as well as the study on how to connect reinforcing rods, which occurs while applying the same methods, is in progress Also, the pressure welded joint is a kind of method that heats the ends of reinforced bars locally and joint them, and after the pressure welding, the vulnerable part in the reinforced bar occur. Thus, in the construction field, the throughout quality control is necessary because of the delayed duration and the lowered construct ability. In this study, of the traditional lap splice method and the mechanical splice one, the screw coupler, we tried to look into through experiments the prefabrication method of bar-meshes, a typical joint method usually used for the joint parts for PSC structures applying the reinforced bar with its big diameter, and a newly-developed up-set coupler method. And we also examined the characteristic of tensile.

Splice Performance Evaluation of Fastening Coupler According to the Slope Length of Internal Fasteners (조임쇠 경사길이에 따른 체결식 커플러의 이음성능 평가)

  • Jung, Hyun-Suk;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.11-19
    • /
    • 2022
  • In this study, in order to improve the splice performance of mechanical couplers, two new mechanical couplers with different connection modes were developed with rebar(SD400). The stress analysis of mechanical couplers with two different connection modes was carried out. Uniaxial tensile tests were carried out with type of steel, connection mode and the slope length of internal fastener as variables to analyze the influence on the maximum tensile strength. Building upon this previous work, the specimens that met the code in uniaxial tensile test were fabricated and static loading test and cyclic loading test were performed on the basis of Korean code(KS D 0249). The results of this research are as follows; (1) The tensile strength of steel and the slope length of internal fasteners have a certain influence on the maximum tensile strength. (2) The connection mode has some influence on the stiffness, slip and stiffness reduction rate of the connecting rebars. The results verify the feasibility of the proposed enhanced mechanical coupler in the field.

Application of non-destructive method for evaluation of soil nail length (쏘일네일의 길이평가를 위한 비파괴 기법의 적용)

  • Kim, Ki-Hong;Kim, Nag-Young;Lee, Jong-Sub;Yu, Jung-Doung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.75-90
    • /
    • 2015
  • As soil nails support a ground by the friction between nails and soils being reinforced, the length of soil nails is important factor for a ground stability. Thus, the soil nail length has to be accurately evaluated in order to secure a ground stability. The goal of this study is to suggest the applicability of the non-destructive method as the basic research for the evaluation of the soil nail length. First, the elastic and electromagnetic waves are adopted to select an applicable method for the soil nails connected by the coupler. Test results show that while the ultrasonic waves are not detected due to the coupler, the electromagnetic waves are free for the influence of the coupler. Second, electromagnetic waves are measured for combined soil nails with the length of 1 m~15 m for the investigation of the characteristics of electromagnetic waves. The travel time of the electromagnetic wave increases with an increase in the soil nail length. In addition, the ground cable is used to apply the electromagnetic waves to pre-installed soil nails. Test results show that the travel time of the electromagnetic wave by using the ground cable increases with an increase in soil nail length. This study demonstrates that the electromagnetic wave may be a promising method for the evaluation of the soil nail length.

Strength Degradation and Failure of Circular RC Bridge Columns with Longitudinal Steel Connection under Cyclic Lateral Load (반복횡하중을 받는 철근콘크리트 원형 교각의 축방향철근 연결상세에 따른 강도저감 및 파괴거동)

  • Lee Jae-Hoon;Jung Chul-Ho;Ko Seong-Hyun;Son Hyeok-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.111-124
    • /
    • 2004
  • This research is a part of a research program to verify the seismic performance of circular reinforced concrete bridge columns with respect to longitudinal steel connection details under cyclic lateral load. A total of 21 column specimens were constructed and tested. Main variables in this test program were longitudinal steel connection details(continuous, lap-spliced, and mechanically connected), confinement steel ratio, and axial force ratio, etc. The test results of the columns with different longitudinal steel connection details showed different failure mode, strength degradation, and seismic performance. From the quasi-static test, it was found that the columns with all longitudinal reinforcement lap-spliced showed significantly reduced ductility. However, seismic performance of the columns with half of longitudinal reinforcement lap-spliced showed limited ductility but much more ductile behaviour than the columns with all longitudinal reinforcement lap-spliced. It was also found that the seismic performance, failure mode and strength degradation of columns with mechanical connected longitudinal reinforcement were similar to those of columns with continuous longitudinal reinforcement.

Mechanical Performance Evaluation of Rolling Thread Steel Rebar Connection with Taper type Coupler (변단면 전조 가공 철근이음 연결방법의 성능 평가)

  • Jeong, Jin-Hwan;Kim, In-Tae;Kim, Tae-Jin;Lee, Myung-Jin;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.40-51
    • /
    • 2015
  • In reinforced concrete structure, rebar connection method should be considered because of its structural role to resist the tensile stress and its structural load transmission with concrete in the concrete structure. Lapped splice and mechanical sleeve type connector have been traditionally used to connect rebar in the concrete structures. In this study, to examine the mechanical and failure behaviors of rebar bar connected by taper type coupler in the concrete member depending on connection type and condition, tensile tests of steel rebar with taper type coupler and flexible loading tests of concrete beams were conducted. Its tensile strength and flexible strength of the rebar connected by taper type coupler were compared and evaluated by mechanical behaviors of rebar. From this study, steel rebar connected by taper type coupler showed it has similar mechanical performance comparing with unconnected rebar, thus taper type coupler can be used in the rebar fabrication of reinforced concrete structure.

A Study on Steel Pipe Coupler for Splicing Spiral Rebars (나선철근 이음을 위한 강관압착식 커플러에 관한 연구)

  • 오민수;이규세;김수만
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.433-436
    • /
    • 1999
  • The spiral provides the column with the ability to absorb considerable deformation prior to failure. Although this toughness is the principal gain that is achieved by the use of spiral reinforced columns, the its serviceability is limited by the fault of lap splices. The mechanical connection for the spiral bar placement is development in the study. The study contains for the experiment of the mechanical connection.

  • PDF

A Study on the Economic Evaluation Model of Splice of Reinforcement Bar(SD500) (초고강도 철근이음의 경제성 평가모델 개발에 관한 연구)

  • Kim, Jae-Yeob;Kim, Dae-Won
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.1
    • /
    • pp.71-76
    • /
    • 2008
  • Recently, the high-rise apartment housings have become a prototype of the urban residential dwelling in Korea and the numbers of one have steadily been increasing. According to this trend, the strength of the construction materials is also fortified to assure the stability and durability of the buildings. Specially, Re-bar of SD500 type is largely used at the construction sites of high-rise building. This study analyzes the current usage of SD500 high-strength re-bar at domestic construction sites. Through the result of this analysis, we develop Economic Evaluation Model that measure economic efficiency of lap splice and coupler splice, which are most commonly used in connection SD500. The evaluation method was applied to construction sites in Seoul in December 2006, and the result revealed that coupler splice is relatively superior in terms of cost efficiency when the re-bar diameter is longer and the concrete strength is lower.

A Study on Benefit/Cost Analysis of Re-Bar Connection Methods for Hyper Strength(SD500) Reinforcement (SD500철근 커플러 이음의 편익/비용분석에 관한 연구)

  • Kim, Jae-Yeob;Kwon, Yeo-Wool;Kim, Jun-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.2
    • /
    • pp.81-87
    • /
    • 2008
  • High-rise building is taking a place as one of building types from apartment housings to commercial buildings. With taking in account of stability and durability, strength of used materials is increasing gradually in these high-rise buildings. According to this, frequency in use of SD500 re-bar is increasing gradually in high-rise buildings. However the study of SD500 re-bar is insufficient because SD500 re-bar started to be used for domestic buildings lately. Specially because there is no guide or study to refer to, people get into difficulties when to decide the method of re-bar connection in construction using SD500 re-bar. Accordingly in this study, it suggests the method of estimating the economical efficiency on SD500 re-bar connection, and conducts benefit/ cost analysis on lapped splice and coupler splice by applying AHP theory, and then presents its result. After to analyze re-bar diameter of D25, 29, and 32, finally we attained the result that the coupler splice is advantageous in all parts of benefit/ cost more than the lapped splice.

Tensile Test for Lap Welded Joints of Rebars(SD400) (일반철근(SD400) 용접 겹침이음 인장실험)

  • Park, Won-Tae;Chun, Kyoung-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.570-576
    • /
    • 2018
  • In reinforced concrete structures, the joints of ordinary rebars are usually lap joints, which are bound by binding wires with rebars, and mechanical joints by couplers. In domestic design standards (concrete design code), welded lap joints are restricted for ordinary rebars, but overseas standards allow welded lap joints of ordinary rebars through pre-heating. This study investigated the domestic and international standards/criteria and evaluated the fracture strength by performing the tensile test on the lap welded joint of SD400 grade rebars, which is used the most in the construction sites. The weld length of the specimen for weld lap joints is based on the minimum weld length (8d) given in the KS standard (KS B ISO 17660-1). According to AWS D1.4, the preheating temperature was set to $150^{\circ}C$ for D19 and below, and $260^{\circ}C$ for D22 and above. In the test results, the tensile strength of rebars with welded lap joints exceeded the required strength (125% of the yield strength) according to the concrete design code. To analyze the effect of preheating, the tensile strength of the welded rebars after preheating was not significantly different from that of the welded rebars without preheating. The carbon equivalent content (Ceq) of the rebars used in the test was 0.45% or less. Under AWS D1.4, no preheating is required if the carbon equivalent is less than 0.45%. All specimens with a welded lap length of 8d failed by a bar fracture. The effect of preheating was confirmed to be insignificant due to the low carbon equivalent of the rebar.