• Title/Summary/Keyword: 철근절단계획

Search Result 5, Processing Time 0.017 seconds

An Implementation of Cutting-Ironbar Manufacturing Software using Dynamic Programming (동적계획법을 이용한 철근가공용 소프트웨어의 구현)

  • Kim, Seong-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.4
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper, we deal an implementation of the software that produces sub-optimal solution of cutting-ironbar planning problem using dynamic programming. Generally, it is required to design an optimization algorithm to accept the practical requirements of cutting ironbar manufacturing. But, this problem is a multiple-sized 1-dimensional cutting stock problem and Linear Programming approaches to get the optimal solution is difficult to be applied due to the problem of explosive computation and memory limitation. In order to overcome this problem, we reform the problem for applying Dynamic Programming and propose a cutting-ironbar planning algorithm searching the sub-optimal solution in the space of fixed amount of combinated columns by using heuristics. Then, we design a graphic user interfaces and screen displays to be operated conveniently in the industry workplace and implement the software using open-source GUI library toolkit, GTK+.

A Development of Ironbar-manufacturing Industry Software using Dynamic Programming (동적계획법을 이용한 철근가공 산업용 소프트웨어 개발)

  • Kim, Seong-Hoon;Park, Choong-Sik
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2008.06a
    • /
    • pp.211-216
    • /
    • 2008
  • 이 논문은 철근 가공 산업 현장에서 스프레드쉬트에 의해 수작업으로 행하던 절단 작업의 계획 수립을 자동화된 시스템에 의해 최적의 절단 계획을 생성하도록 하는 소프트웨어의 개발을 다룬다. 이를 위하여, 먼저 시스템의 데이터 표현과 최적 문제 풀이를 위한 자동 계획 알고리듬의 설계가 요구된다. 이것은 다중 규격의 1차원 자재 절단 문제를 푸는 것으로, 동적계획법에 근거하여 자재 절단 문제를 재구성하고, 유한 범위의 조합 열에서도 근사 최적의 해를 찾을 수 있는 탐색 기법을 사용한 자재 절단 계획 알고리듬을 사용하였다. 그리고, 자동화된 철근 가공 산업용 소프트웨어는 작업 환경에 맞게 사용이 편리한 그래픽 화면과 사용자 인터페이스가 요구되는데, 공개 소프트웨어를 활용한 GUI 라이브러리 툴킷인 GTK+를 활용하여 이를 구현하였다.

  • PDF

Development of the Pushing Type Cutting Device to Dismantle Concrete Structure for Decommissioning of Nuclear Power Plant (원전해체 시 콘크리트 구조물 절단을 위한 밀기형 절단장치 개발)

  • Lee, Bong-Jae;Kwon, Yong-Kyu;Hong, Chang-Dong;Lee, Dong-Won;Min, Kyong-Nam
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.103-111
    • /
    • 2020
  • Pulling-type cutting devices, which use a diamond wire saw, have been used generally for cutting concrete structures. In this study, a pushing-type cutting device with a collection cover was developed by overcoming the disadvantages of pulling-type devices. In this device, dry or liquid methods can be selected to cool frictional heat. Operation and leakage tests of the dust generated during the dismantling of a concrete structure were carried out, confirming the suitable operation of the fabricated cutting device; the leakage rate was approximately 1.7%. For a conservative evaluation, the internal dose of workers was estimated in dismantling the core center part of biological shield concrete with a specific activity of 99.5 Bq·g-1. The committed effective dose per worker was 0.25 mSv. The developed cutting device contributed to reducing radioactive concrete waste and minimizing worker exposure due to its easy installation. Therefore, it can be utilized as a cutting apparatus for dismantling not only reinforced concrete structures but also radioactive biological shield concrete in nuclear power plant decommissioning efforts.

Optimi Design for R.C. Beam with Discrete Variables (이산형 설계변수를 갖는 철그콘크리트보의 최적설계)

  • 구봉근;한상훈;김홍룡
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.4
    • /
    • pp.167-178
    • /
    • 1993
  • The objective of this paper is to look into the possibility of the detailed and practical optimum design of rt:inforced concrete beam using methods oi discrete mathematical programming. In this discrete optimum formulation, the design variables are the overall depth, width and effective depth of members, and area of longitudinal reinforcement. In addition, the details such as the amount of web reinforcement and cutoff points of longitudinal reinforcement are also considered as variables. Total cost has been used as the objective function. The constraints include the code requirments such as flexural strength, shear strength, ductility, serviceability, concrete cover. spacing, web reinforcement, and development length and cutoff points of longitudinal renforcement. An optimization algorithm is presented for effective optimum design of R.C. beam with discrete de sign variables. First, the continuous variable optimization can be achieved by Feasible Direction Method. Using the results obtained from the continuous variable optimization, a branch and bound method is used to obtained the discrete design values. The proposed algorithm is applied to test problem for reliability, and the results are compared with those of graphical method and rounded-up method. And a simply supported R.C. beam and a two-span continuous R.C. beam are presented as numerical examples for effectiveness and applicability. It is considered that the presented algorithm can be effectively applied to the discrete optimum design of R.C. beams.

Development of an Algorithm for Automatic Quantity Take-off of Slab Rebar (슬래브 철근 물량 산출 자동화 알고리즘 개발)

  • Kim, Suhwan;Kim, Sunkuk;Suh, Sangwook;Kim, Sangchul
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.5
    • /
    • pp.52-62
    • /
    • 2023
  • The objective of this study is to propose an automated algorithm for precise cutting length of slab rebar complying with regulations such as anchorage length, standard hooks, and lapping length. This algorithm aims to improve the traditional manual quantity take-off process typically outsourced by external contractors. By providing accurate rebar quantity data at BBS(Bar Bending Schedule) level from the bidding phase, uncertainty in quantity take-off can be eliminated and reliance on out-sourcing reduced. In addition, the algorithm allows for early determination of precise quantities, enabling construction firms to preapre competitive and optimized bids, leading to increased profit margins during contract negotiations. The proposed algorithm not only streamlines redundant tasks across various processes, including estimating, budgeting, and BBS generation but also offers flexibility in handling post-contract structural drawing changes. In particular, the proposed algorithm, when combined with BIM, can solve the technical problems of using BIM in the early phases of construction, and the algorithm's formulas and shape codes that built as REVIT-based family files, can help saving time and manpower.