• Title/Summary/Keyword: 철골 트러스 구조

Search Result 22, Processing Time 0.015 seconds

Member Sizing Method in IsoTruss® Grid High-rise Building Structures Based on Stiffness Criteria (강성도 기준에 따른 IsoTruss® 그리드 고층건물의 부재선정 방법)

  • Kim, Tae-Heon;Kim, Young-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.50-56
    • /
    • 2017
  • The perimeter structure in high-rise buildings, which plays a major role in resisting lateral forces, is generally formed by the orthogonal placement of the beam and column, but currently various grid patterns are implemented. In a previous study, the adaptability of the $IsoTruss^{(R)}$ grid (ITG) as a perimeter structure was examined. In this study, a method of estimating the required cross sectional area of a member in a preliminary design is proposed. The members of the perimeter structure are placed in three planes, perpendicular (PPR), parallel (PPL) and oblique (POQ) to the lateral loading, and the stiffness of the members in the POQ was taken into account by projecting them onto the PPL or PPR. Three models are established for member size zoning through the height of the building, in order to investigate the effect of the shear and moment in the calculation of the required cross sectional area. To examine the effectiveness of this study, a 64-story building is designed and analyzed. The effect of the member size zoning was examined by comparing the maximum lateral displacement, required steel amount, and axial strength ratio of the columns. Judging from the maximum lateral displacement, which was 97.3% of the allowable limit, the proposed formula seems to be implemental in sizing the members of an ITG structure at the initial stage of member selection.

Analysis of Shear Force in Perimeter Column due to Outrigger Wall in a Tall Building (고층 건물의 아웃리거 벽체에 의한 외부 기둥의 전단력 해석)

  • Huang, Yi-Tao;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.293-299
    • /
    • 2018
  • Steel truss outriggers can be replaced by reinforced concrete walls to control the lateral drift of tall buildings. When reinforced concrete outrigger walls are connected to perimeter columns, not only axial forces but also shear forces and moments can be induced on the perimeter columns. In this study, the shear force of the perimeter column due to the rotation of the outer edge of the outrigger wall is derived as analytic equations and the result is compared with the finite element analysis result. In the finite element analysis, the effects of connecting beams at each floor and the effect of modeling shear walls and outriggers with beam element and plane stress element was analyzed. The effect of the connecting beam was almost negligible and the plane stress element was determined to have greater stiffness than the beam element. The inter-story rotation and the shear force of the perimeter column due to the rotation of the outer edge of the outrigger wall was considerably smaller than the allowable value. Therefore, even if the outrigger wall made of reinforced concrete is applied to a tall building, it is considered that there is no need to study the shear force and moment induced in the perimeter columns.