• Title/Summary/Keyword: 천정

Search Result 633, Processing Time 0.027 seconds

Deriving Critical Management Factors based on Case Studies of Multi-trade MEP Ceiling Rack Prefabrication (복합공종 MEP 천정 선조립 공법 사례조사를 통한 단계별 중점관리사항 도출)

  • Lee, Dongmin;Jang, Sejun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.76-77
    • /
    • 2015
  • In construction industry, management of construction factors such as cost, schedule, quality and safety is the most important key for delivering successful projects. According to the Smart Market Report, a magazine specialized in construction industry, recently said 'Off-site Prefabrication' is a significant trend related with construction productivity in global construction industry. It is a kind of practice shift from On-site to Off-site. A lot of general contractors in oversea have been using 'Multi-trade MEP Ceiling Rack Prefabrication' method for getting benefits such as decreased cost & schedule and increased labor productivity. Thus, in this paper, critical management factors at each phase from design to installation was derived by researching case studies. Forwardly, it can be a basic guideline for applying Multi-trade MEP Ceiling Rack Prefabrication in Korea construction industry.

  • PDF

The Modelling and Position Control of Overhead Cranes (천정 크레인의 모델링 및 위치제어)

  • Lee, Jong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1919-1925
    • /
    • 2001
  • Overhead cranes consist of trolley, girder, rope, objects, trolley motor, girder motor, and hoist motor. If objects are regarded as mass point, and the acceleration of hoisting motion for objects is neglected, analytical model of overhead cranes becomes a nonlinear model because the length of a rope changes. Equations of motion this model is derived of simultaneous differential equations fur motors and object. Positions of the model are controlled by optimal inputs which obtain from a nonlinear optimal control method. From the results of computer simulation, even if initial states of objects suing, it is founded that position of overhead cranes is controlled, and that swing of objects is suppressed.

Reduction of Residual Vibration for 2 Axes Overhead Crane by Input Shaping (입력성형기법에 의한 2축 천정크레인의 잔류진동 감소)

  • 박운환;이재원;노상현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.181-188
    • /
    • 2000
  • Input shaping is a method fur reducing residual vibration. Vibration is eliminated by convolving an input shaper, which is a sequence of impulses, with the desired system command. It has been applied to robot with a flexible manipulator. But it can be applied to the reduction of residual vibration far overhead crane. In this paper, input shaping shows good performance for anti-sway of overhead crane. In the z-domain, we designed an input shaper and calculated the sensitivity of it. If sensitivity is calculated in the z-domain, the shapes of sensitivity curves are expected easily. Accordingly, it is easy to design an input shaper in the z-domain. We compared the response of a system with shaper to it without that. Also, we compared El shaper to ZV shaper in view of robustness.

  • PDF

An Experimental Study on an Optimal Controller for the Overhead Crane Using the Genetic Algorithm (유전자 알고리즘을 이용한 천정크레인의 최적제어기에 실험적 연구)

  • Choi, Hyeung-Sik;Kim, Kil-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.34-41
    • /
    • 1999
  • This paper presents a HGA-based(hybrid genetic algorithm) optimal control strategy to control of the swing motion and the transfer of the overhead crane. The objective is to achieve the regulation of the fast swing motion or fast position control. The controller is based on the state feedback. The HGA-based optimal algorithm is applied to find optimal gains of the controller. Computer simulation and experiments were performed to demonstrate the effectiveness of the proposed control scheme.

  • PDF