• Title/Summary/Keyword: 천정지연

Search Result 24, Processing Time 0.02 seconds

Determination of Slant Wet Delay using GPS (GPS를 이용한 시선방향 습윤지연 결정)

  • 하지현;박관동;박종욱
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.141-146
    • /
    • 2004
  • 본 연구에서는 Canada Southern Alberta Network의 6곳의 GPS(Global Positioning System) 상시관측소 데이터를 바탕으로 관측소와 각 GPS 위성간의 시선방향 습윤지연량을 결정하였다. 고정밀 GPS 데이터를 이용하여 천정방향 습윤지연량을 결정하고 이를 WVR(Water Vapor Radiometer)에서 측정한 천정방향 습윤지연량과 비교하였다. 그 결과 WVR의 천정방향 습윤지연량과 비교할 때 GPS로 관측한 천정방향 습윤지연량은 최대 1.39cm, 최소 0.99cm의 RMS 오차를 보였다. 또한 GPS로 관측한 시선방향 습윤지연량은 WVR과 비교할 때, PRN 25번 위성의 경우최대 17cm, 최소 0.05cm의 차이가 났다.

  • PDF

Estimation of Tropospheric Zenith Delay over the Seoul-Jecheon area using GPS (GPS를 이용한 서울-제천 지역의 대류층 천정 지연 평가)

  • Kwon, Young-Cheol;Han, Uk;Park, Pil-Ho
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.380-388
    • /
    • 2000
  • The estimation of tropospheric zenith delay over the Seoul-Jecheon area using GPS is presented. Over the past ten years, the world-wide industrial nations have been intensively concerned over increasing GPS surveyings in the various fields of earth science. To preserve precise positioning under various weather conditions, relationships between tropospheric zenith delay and GPS accuracy are analyzed. GPS accuracies are compared with tropospheric zenith delay produced by Bernese 4.0 software. Errors of tropospheric delay are 20cm in mean and reduced up to 5cm when tropospheric correction models are used. Correlation between error of GPS and tropospheric zenith delay plays a positive role to monitor the migration of weather front in the established Korean GPS network.

  • PDF

Retrieval Biases Analysis on Estimation of GNSS Precipitable Water Vapor by Tropospheric Zenith Hydrostatic Models (GNSS 가강수량 추정시 건조 지연 모델에 의한 복원 정밀도 해석)

  • Nam, JinYong;Song, DongSeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.4
    • /
    • pp.233-242
    • /
    • 2019
  • ZHD (Zenith Hydrostatic Delay) model is important parameter in estimating of GNSS (Global Navigation Satellite System) PWV (Precipitable Water Vapor) along with weighted mean temperature. The ZWD (Zenith Wet Delay) is tend to accumulate the ZHD error, so that biases from ZHD will be affected on the precision of GNSS PWV. In this paper, we compared the accuracy of GNSS PWV with radiosonde PWV using three ZHD models, such as Saastamoinen, Hopfield, and Black. Also, we adopted the KWMT (Korean Weighted Mean Temperature) model and the mean temperature which was observed by radiosonde on the retrieval processing of GNSS PWV. To this end, GNSS observation data during one year were processed to produce PWVs from a total of 5 GNSS permanent stations in Korea, and the GNSS PWVs were compared with radiosonde PWVs for the evaluating of biases. The PWV biases using mean temperature estimated by the KWMT model are smaller than radiosonde mean temperature. Also, we could confirm the result that the Saastamoinen ZHD which is most used in the GNSS meteorology is not valid in South Korea, because it cannot be exclude the possibility of biases by latitude or height of GNSS station.

Comparison of Time Offsets by Tropospheric Zenith Path delay models and Mapping Functions in GPS Time Transfer (GPS 시각 전송에서의 대류층 천정지연 모델과 매핑 함수에 따른 시각오프셋 비교)

  • Yu, Dong-Hui
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1317-1322
    • /
    • 2014
  • This paper shows effects of tropospheric delay models and mapping functions among delay features occurred when GPS code signal is transferred for GPS Time Transfer. GPS time transfer uses CGGTTS as the international standard format. For geodetic GPS receiver, ROB has provided r2cggtts software which generates CGGTTS data from RINEX data and all laboratories participated in TAI link use this software and send the CGGTTS results periodically. Though Saastamoinen zenith path model and Niell mapping function are commonly used in space geodesy, r2cggtts software applied NATO zenith path model and CHAO mapping function to the tropospheric delay model. Hence, this paper shows effects of two tropospheric delay models by implementing Saastamoinen model and Niell mapping function for the time offset.

Estimation of GNSS Zenith Tropospheric Wet Delay Using Deep Learning (딥러닝 기반 GNSS 천정방향 대류권 습윤지연 추정 연구)

  • Lim, Soo-Hyeon;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.23-28
    • /
    • 2021
  • Data analysis research using deep learning has recently been studied in various field. In this paper, we conduct a GNSS (Global Navigation Satellite System)-based meteorological study applying deep learning by estimating the ZWD (Zenith tropospheric Wet Delay) through MLP (Multi-Layer Perceptron) and LSTM (Long Short-Term Memory) models. Deep learning models were trained with meteorological data and ZWD which is estimated using zenith tropospheric total delay and dry delay. We apply meteorological data not used for learning to the learned model to estimate ZWD with centimeter-level RMSE (Root Mean Square Error) in both models. It is necessary to analyze the GNSS data from coastal areas together and increase time resolution in order to estimate ZWD in various situations.

Effects of Tropospheric Delay Models for GPS Time Transfer (GPS 시각 전송에서의 대류층 지연 모델 영향 비교)

  • Yu, Donghui
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.139-141
    • /
    • 2014
  • This paper shows effects of tropospheric delay models among delay features occurred when GPS code signal is transferred for GPS Time Transfer. GPS time transfer uses CGGTTS as the international standard format. For geodetic GPS receiver, ROB has provided r2cggtts software which generates CGGTTS data from RINEX data and all laboratories participated in TAI link uses the software and send the CGGTTS results periodically. Though Saastamoinen model and Niell mapping function are commonly used in space geodesy, r2cggtts software applied NATO model and CHAO mapping function to the tropospheric delay model. Hence, this paper shows effects of two tropospheric delay models implementing Saastamoinen model and Niell mapping function for the time offset.

  • PDF

Kalman filter modeling for the estimation of tropospheric and ionospheric delays from the GPS network (망기반 대류 및 전리층 지연 추출을 위한 칼만필터 모델링)

  • Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_1
    • /
    • pp.575-581
    • /
    • 2012
  • In general, various modeling and estimation techniques have been proposed to extract the tropospheric and ionospheric delays from the GPS CORS. In this study, Kalman filter approach is adopted to estimate the tropospheric and ionospheric delays and the proper modeling for the state vector and the variance-covariance matrix for the process noises are performed. The coordinates of reference stations and the zenith wet delays are estimated with the assumption of random walk stochastic process. Also, the first-order Gauss-Markov stochastic process is applied to compute the ionospheric effects. For the evaluation of the proposed modeling technique, Kalman filter algorithm is implemented and the numerical test is performed with the CORS data. The results show that the atmospheric effects can be estimated successfully and, as a consequence, can be used for the generation of VRS data.

A Comparison of Correction Models for the Prediction of Tropospheric Propagation Delay of GPS Signals (GPS 신호의 대류층 지연 예측을 위한 보정모델의 비교)

  • 이용창
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.3
    • /
    • pp.283-291
    • /
    • 2002
  • Since GPS's SA cancellation, the interest is converged in correction of errors such as atmospheric delay and multipath that weight had been small relatively, which can improve the accuracy of positioning through modelling research. The aim of this study have an extensive comparison of the various tropospheric delay models (Goad&Goodman, A&K, Hopfield and Sasstamoinen) and mapping functions(Niell, Chao, and Marini). Expecially, the tropospheric delay amounts by change of the GPS satellite elevations, and the delay by various combination between zenith delay models and mapping functions, compared and examined. For this, programmed the total delay models and the combined models which can be described as a product of the delay at the zenith and a mapping function. The result of study, especially, as the minimum elevation of included data is reduced under $10^{\circ}$, it was considered to be reasonable that the prediction of tropospheric delay considering combination and mapping character of functions about the transition of the zenith delay to a delay with arbitrary zenith angle.

Modeling of Stochastic Process Noises for Kinematic GPS Positioning (GPS 이동측위를 위한 프로세스 잡음 모델링)

  • Chang-Ki, Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.123-129
    • /
    • 2015
  • The Kalman filter has been widely used in the kinematic GPS positioning due to its flexibility and efficiency in computational points of view. At the same time, the relative positioning technique also provided the high precision positioning results by removing the systematic errors in the measurements significantly. However, the positioning quality may be degraded following to longer in baseline length. For this case, it is required that the remaining atmospheric effects, such as double-difference ionospheric delay and zenith wet delay, should be properly modeled by examining the characteristics of the stochastic processes. In general, atmospheric effects are estimated with the assumption of random walk, or the first-order Gauss-Markov stochastic process, which requires the precise modeling on the corresponding process noises. Therefore, we determined and provided the parameters for modelling the process noises for atmospheric effects. The auto-correlation functions are empirically determined at first, and then the parameters are extracted from the empirical auto-correlation function. In fact, the test results can be either applied directly, or used as guidance values for the modeling of process noises in the kinematic GPS positioning.

Analysis of Tropospheric Zenith Path Delay of GPS Code Based Precise Time Comparison Technique (GPS 코드 기반 정밀시각비교기법의 대류층 천정지연모델 분석)

  • Yu, Dong-Hui;Yang, Sung-Hoon;Do, Jae-Chul;Lee, Chang-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.61-69
    • /
    • 2012
  • This paper shows results of the precise time comparison technique based on GPS code transfer in order to determine the UTC(Universal Time Coordinated) and generate TAI(International Atomic Time). CGGTTS(CCTF Group on GNSS Time Transfer Standards) which is generated by GPS timing receivers is used as the international standard format. For geodetic receivers which provide RINEX formats as GPS time transfer results, ROB(Royal Observatory of Belgium) developed a conversion program, r2cggtts, and have distributed the program to timing laboratories participating in TAI link all over the world. Timing laboratories generate the time comparison results of GPS code transfer by the program and send them to BIPM(Bureau International des Poids et Mesures) periodically. In this paper, we introduce the delay features generated while GPS code is transferred and the calibration methods of them. Then, we introduce the tropospheric delay and analyze the results of Saastamoinen model and NATO(North Atlantic Treaty organization) model. Saastamoinen model is the representative tropospheric zenith path delay model and NATO model is applied to the legacy r2cggtts program.