• Title/Summary/Keyword: 천연액화가스

Search Result 316, Processing Time 0.024 seconds

The comparative risk assessment of LNG tank designs using FTA (고장수목분석법을 이용한 액화천연가스 저장탱크 형식별 위험성 비교 평가)

  • Lee, Seung Rim;Kim, Han Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.48-54
    • /
    • 2012
  • Building above-ground membrane LNG storage tanks have been recently actively reviewed because they have advantages in ease of large capacity, environmental friendliness, and low possibility of gas leakage of the inner tank (slow increase of leakage speed). In this paper, the safety of membrane LNG storage tanks was ensured through comparative risk assessment of full-containment LNG storage tanks and membrane LNG storage tanks by using Fault Tree Analysis (FTA). Risk assessment results showed that both types of tanks have very similar level of risk except for the membrane storage tanks without additional safety equipments (early model).

Exhaust Emissions Characteristics on Driving Cycle Mode and Ignition Advance Condition Change of CNG/LPLI Bi-Fuel Vehicle (CNG/LPLI Bi-Fuel 자동차에서 주행시험 모드와 점화진각에 따른 배출가스 특성)

  • Cho, Seungwan;Kim, Seonghoon;Kwon, Seokjoo;Park, Sungwook;Jeon, Chunghwan;Seo, Youngho
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.40-46
    • /
    • 2014
  • Recently rise in oil prices feet the burden on not only diesel vehicle driver but also LPG vehicle driver, and get interested in various way to reduce fuel costs. In this study discuss on exhaust emissions characteristics on driving cycle mode and ignition advance condition change of CNG/LPLI Bi-Fuel vehicle. Experimental test was performed by changing the conditions of fuel (LPG/CNG), spark advance (Base, $10^{\circ}CA$, $15^{\circ}CA$), and driving mode (FTP-75, HWFET, and NEDC). In case of CO emission, in the order of CNG Base, CNG S/A10, S/A15 condition are average reduced -21%, -35%, -29% respectively compared to LPG fuel. The active emission reduction from the initial engine start, spark retard is likely to be beneficial in catalyst warm-up and improve combustion stability rather than spark advance.

Quantitative Risk Assessment of Mobile LNG Filling Station (이동식 LNG 충전소 정량적 위험성 평가)

  • Jeon, Eun-Gyeong;Choi, Young-Joo;Kim, Pil-Jong;Yu, Chul-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.45-52
    • /
    • 2021
  • The government is converting the fuel for trucks, one of the causes of PM in Korea, form diesel to LNG. Mobile LNG station are being developed to solve the problems of insufficient charging infrastructure and facilitate the spread of LNG fuel. In this study, QRA was used th calculate the CA of the facility for a secure design prior to the development of the mobile LNG station and to predict the individual/societal risk the scenario. As a result, the danger of mobile LNG station was in ALARP.

부유식 천연액화가스(LNG) 터미널의 설계 기술 개발

  • Han Yong-Seop;Lee Jeong-Han;Kim Yong-Su
    • THE INDUSTRY AND TECHNOLOGY OF GAS
    • /
    • v.5 no.1 s.6
    • /
    • pp.39-47
    • /
    • 2002
  • With the expansion of natural gas demands in many countries, the necessity of LNG receiving terminals has been increased. The offshore LNG Floating Storage and Regasification Unit (FSRU) attracts attentions not only for a land based LNG receiving terminal alternative, but also for a feasible and economic solution. Nowadays, as the reliability of offshore oil and gas floating facilities and LNG carriers gains with proven worldwide operations, the FSRU can achieve a safety level that can be comparable to an onshore terminal. The design development related with safety features of the FSRU has been extensively carried out by oil and gas companies, shipyards, engineering companies, and equipment vendors, and has been successful so far in many fields. The construction of the FSRU can be achieved by integrating various technologies and experiences from many disciplines and many participating companies and vendors. In this paper, reviews on some of the important design features and design improvements on FSRU together with the practical construction aspects in cargo containment, vaporization system, ESD system, and operation modes, have been covered in comparison with actual LNG carrier, onshore receiving terminal, and FPSO systems. In order to materialize an FSRU project, the technical and economic justification has to be preceded. It is believed that once the safety and technical soundness is convinced, the FSRU can bring a higher project feasibility by reducing the overall construction time and cost. Through this study, an FSRU design readily applicable to an actual project has been developed by incorporating experiences gained from many marine and offshore projects. The wide use of proven standard technologies adopted in the series construction of LNG carriers and offshore FPSOs will bring the project efficiency and reliability.

  • PDF

Dynamic Ductile Fracture Analysis of Natural Gas Pipelines on the Basis of Material Grade and Charpy V-Notch Impact Energy (가스배관의 재질등급 및 충격에너지에 따른 연속연성파괴 거동분석)

  • Jeong, Hyo-Tae;Choe, Byung-Hak;Lee, Young-Jin;Lee, Jeong-Hwa;Hong, Key-Yong;Baek, Jong-Hyeon;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.35-40
    • /
    • 2012
  • To analyze the macroscopic fracture behavior as functions of the gas pipeline grade and the working environment, following analyses have been accomplished. Computer analysis of changes in fracture behaviors according to the working conditions of pipelines and Analysis of dynamic ductile fracture behaviors using the Battelle Two Curve Method. Recently, an economic and reliable pipe materials with improved performance has been needed for the severe pipeline working condition and new transporting materials. As the grade of pipe materials became higher, the possibility of dynamic ductile fracture could be increased. Therefore, the understanding of the technology to control and arrest the dynamic ductile fracture is important.

Numerical Analysis on the Increasing Temperature Characteristics of Vaporizer Fin for Liquefied Natural Gas with Super Low Temperature (초저온 액화 천연 가스용 기화기 핀의 승온 특성에 관한 수치 해석)

  • Yi, C.S.;Kong, T.W.;Lee, H.D.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.81-87
    • /
    • 2005
  • This study is numerical analysis on the increasing temperature characteristics of vaporizer fin for liquefied natural gas with super low temperature. Existing LNG vaporizers use the direct contact heat transfer mode where the extreme super low temperature LNG of $-162^{\circ}C$ flows inside of the tubes and about $20^{\circ}C$air flows on outside of the fin. Recently, the vaporizers with great enhanced performance compared to conventional type have been developed to fulfill these requirements. The vaporizing characteristic of LNG vaporizer with air as heat source has a fixed iced. These characteristic cause a low efficiency in vaporizer, total plant cost and installing space can be increased. The vaporizing characteristics of LNG via heat exchanger with air are analytically studied for an air heating type vaporizer. This study is intended to supply the design data for the domestic fabrication of the thickness and angle vaporizer fin. Governing conservation equations for mass, momentum and energy are solved by STAR-CD based on an finite volume method and SIMPLE algorithm. Calculation parameter is fin thickness, setup angle and LNG temperature. If the vaporization performance of the early stage and late stage of operating is considered, the case of ${\phi}=90^{\circ}$ was very suitable. In this paper was estimated that the heat transfer was most promoted in case of THF=2mm.

  • PDF

Simulation Study on the Application of LNG Cold Energy for Hydrogen Liquefaction Process (수소액화공정에서 LNG 냉열 적용에 관한 시뮬레이션 연구)

  • HAN, DANBEE;BYUN, HYUNSEUNG;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • As hydrogen utilization becomes more active recently, a large amount of hydrogen should be supplied safely. Among the three supply methods, liquefied hydrogen, which is an optimal method of storage and transportation convenience and high safety, has a low temperature of -253℃, which is complicated by the liquefaction process and consumes a lot of electricity, resulting in high operating costs. In order to reduce the electrical energy required for liquefaction and to raise the efficiency, hydrogen is cooled by using a mixed refrigerant in a precooling step. The electricity required for the precooling process of the mixed refrigerant can be reduced by using the cold energy of LNG. Actually, LNG cold energy is used in refrigeration warehouse and air liquefaction separation process, and a lot of power reduction is achieved. The purpose of this study is to replace the electric power by using LNG cold energy instead of the electric air-cooler to lower the temperature of the hydrogen and refrigerant that are increased due to the compression in the hydrogen liquefaction process. The required energy was obtained by simulating mixed refrigerant (MR) hydrogen liquefaction system with LNG cold heat and electric system. In addition, the power replacement rate of the electric process were obtained with the pressure, the temperature of LNG, the rate of latent heat utilization, and the hydrogen liquefaction capacity, Therefore, optimization of the hydrogen liquefaction system using LNG cold energy was carried out.

Potential Explosion Risk Comparison between SMR and DMR Liquefaction Processes at Conceptual Design Stage of FLNG (FLNG개념설계 단계에서 SMR 및 DMR 액화공정의 잠재적 폭발위험도 비교)

  • You, Wonwo;Chae, Minho;Park, Jaeuk;Lim, Youngsub
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.95-105
    • /
    • 2018
  • An FLNG (floating liquefied natural gas) or LNG FPSO (floating production, storage and offloading) unit is a notable offshore unit with the increasing demand for LNG. The liquefaction process on an FLNG unit is the most important process because it determines the economic feasibility, but would be a hazard source because of the large quantity of hydrocarbons. While a high efficiency process such as C3MR has been preferred for onshore liquefaction processes, a relatively simple process such as the SMR (single mixed refrigerant) or DMR (dual mixed refrigerant) liquefaction process has been selected for offshore units because they require a more compact size, lighter weight, and higher safety due to their space limitation for facilities and long distance from shore. It is known that an SMR has the advantages of a simple configuration, small footprint, and lower risk. However, with an increased production rate, the inherent safety of SMR needs to be evaluated because of its small train capacity. In this study, the potential explosion risks of the SMR and DMR liquefaction processes were evaluated at the conceptual design stage. The results showed that an SMR has a lower overpressure than a DMR at the same frequency, only with a small production capacity of 0.9 MTPA. With increased capacity, the overpressure of the SMR was higher than that of the DMR. The increased number of trains increased the frequency in spite of the small amount of equipment per train. This showed that the inherent risk of an SMR is not always lower than that of a DMR, and an additional risk management strategy is recommended when an SMR is selected as the concept for an FLNG liquefaction process compared to the DMR liquefaction process.

Domestic Gas Turbine Industry Development Strategies Based on Domestic Supply Chain and Potential Analysis (공급사슬 및 내재역량 분석을 통해 고찰한 국내 가스터빈 산업 국산화 개발 전략)

  • Hyun, Jungwoo;Lee, Sangkyun;Jin, Hwan Jun;Park, Chinho
    • Journal of Energy Engineering
    • /
    • v.29 no.1
    • /
    • pp.13-24
    • /
    • 2020
  • Many countries are actively engaging in the reduction of greenhouse gas emissions, and as part of this effort, gradually reducing the portion of coal power generation and instead increasing the portion of power generations from renewable energy sources and natural gas. Korea is taking a similar policy to expand LNG power generation for the next decade. There is a concern, though, about the policy not being aligned with the domestic industry development, since only a few products are being made in Korea along the LNG power generation industry value chain. Therefore in this paper, we first looked at the current status of the gas turbine and high temperature parts industry used for LNG power generation in Korea, and then looked into the industrial issues and challenges through the analysis of supply chains of the domestic gas turbine industry. Finally, we tried to propose strategies to revitalize and localize the domestic gas turbine and high temperature parts industry. The proposed strategies can be summarized as 1) creation of domestic gas turbine manufacturing ecosystem via construction of gas turbine alliance, 2) strategic R&D support for localization of gas turbine and high temperature parts, and 3) provision of domestic testbeds for technology evaluation and commercialization.

A Study on the Improvement of LNGC Re-liquefaction System (LNG선 재액화 시스템의 성능 개선에 관한 연구)

  • Oh, Cheol;Song, Young-Uk
    • Journal of Navigation and Port Research
    • /
    • v.33 no.10
    • /
    • pp.659-664
    • /
    • 2009
  • LNG carriers have, up to 2006, mainly been driven by steam turbines. The Boil-Off Gas from the LNG cargo tanks has so far been used as fuel. This is a costly solution that requires special skills during construction and operation. Alternative propulsion systems offer far better fuel economical efficiency than steam turbines. Instead of previous practice using Boil-Off Gas as a fuel, the Re-liquefaction system establishes a solution to liquefy the Boil-Off Gas and return the LNG to the cargo tanks. This Re-liquefaction of Boil-Off Gases on LNG carriers results in increased cargo deliveries and allows owners and operators to choose the most optimum propulsion system. In this study, thermodynamic cycle analysis has been performed on two type of LNG Re-liquefaction system which was designed and adopted for the Q-Flex(216,000$m^3$) and Q-Max(266,000$m^3$) LNG carrier under construction at Korea ship yards and variable key factor was simulated to compare efficiency, power and nitrogen consumption of each Re-liquefaction system.