• Title/Summary/Keyword: 천연액화가스

Search Result 316, Processing Time 0.029 seconds

A comparison of predicted VLE of LNG mixtures containing $H_2S$ by use of Cubic and Noncubic EOS ($H_2S$를 포함하는 LNG 혼합물에 대한 Cubic과 Noncubic 상태방정식의 예측 비교)

  • Choi Eunjoo;Lee Taejong
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.4 s.12
    • /
    • pp.1-5
    • /
    • 2000
  • Cubic and non-cubic equations of state are used to calculate the vapor-liquid equilibrium(VLE) compositions for liquified natural gas(LNG) containing hydrogen sulfide. Modified Benedict-Web-Robin EOS is chosen as a non-cubic equation of state while Peng-Robinson, Soave-Redlich-Kwong EOS are used for a cubic EOS. Modified Benedict-Web-Robin EOS. showed better predictability than the cubic EOS used for the systems $H_2S/CH_4,\;H_2S/iC_4H_{10},\;H_2S/N_2$. specially for liquid composition.

  • PDF

Process Analysis and Simulation for System of Air Liquefaction Separation Using LNG Cold Energy (LNG 냉열을 이용한 공기액화분리시스템의 시뮬레이션 및 공정 해석)

  • HAN, DANBEE;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.276-281
    • /
    • 2019
  • The process of separating oxygen and nitrogen from the air is mainly performed by electric liquefaction, which consumes a lot of electricity, resulting in higher operating costs. On the other hand, when used for cold energy of LNG, electric power can be reduced compared to the electric Linde cycle. Currently, LNG cold energy is used in the cold refrigeration warehouse, separation of air-liquefaction, and LNG cold energy generation in Japan. In this study, the system using LNG cold energy and the Linde cycle process system were simulated by PRO/II simulators, respectively, to cool the elevated air temperature from the compressor to about $-183^{\circ}C$ in the air liquefaction separation process. The required amount of electricity was compared with the latent heat utilization fraction of LNG, the LNG supply pressure, and the LNG cold energy usage. At the air flow rate of $17,600m^3/h$, the power source unit of the Linde cycle system was $0.77kWh/m^3$, compared with $0.3kWh/m^3$.

Numerical Model of Heat Diffusion and Evaporation by LNG Leakage at Membrane Insulation (LNG 화물창 방열재 균열에 따른 액화천연가스의 확산 및 온도 예측을 위한 수치 모델)

  • Lee, Jang Hyun;Kim, YoonJo;Hwang, Se Yun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.517-526
    • /
    • 2014
  • The leakage of cryogenic LNG through cracks in the insulation membrane of an LNG carrier causes the hull structure to experience a cold spot as a result of the heat transfer from the LNG. The hull structure will become brittle at this cold spot and the evaporated natural gas may potentially lead to a hazard because of its flammability. This paper presents a computational model for the LNG flow and heat diffusion in an LNG insulation panel subject to leakage. The temperature distribution in the insulation panel and the speed of gas diffusion through it are simulated to assess the safety level of an LNG carrier subject that experiences a leak. The behavior of the leaked LNG is modeled using a multiphase flow that considers the mixture of liquid and gas. The simulation model considers the phase change of the LNG, gas-liquid multiphase interactions in the porous media, and accompanying rates of heat transfer. It is assumed that the NO96-GW membrane storage is composed of glass wool and plywood for the numerical simulation. In the numerical simulation, the seepage, heat diffusion, and evaporation of the LNG are investigated. It is found that the diffusion speed of the leakage is very high to accelerate the evaporation of the LNG.

Study on the Effect of Density Ratio of Gas and Liquid in Sloshing Experiment (기체-액체 밀도차에 대한 슬로싱 충격압력의 실험적 고찰)

  • Ahn, Yangjun;Kim, Sang-Yeob;Kim, Kyong-Hwan;Lee, Sang-Woo;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.2
    • /
    • pp.120-128
    • /
    • 2013
  • This paper presents the results of sloshing experiments having different fluids in model tanks with various density ratios. The experimental model consisting water and air at ambient, which has been commonly used, is not consistent in density ratio with that of an actual LNG cargo tank. Therefore, an advanced experimental scheme is developed to consider the same density ratio of LNG and NG by using a mixed gas of sulfur hexafluoride ($SF_6$) and nitrogen ($N_2$). For experimental observation, a two-dimensional model tank of 1/40 scale and a three-dimensional model tank of 1/50 scale have been manufactured and tested at various conditions. Two different fillings with various excitation frequencies under regular motions have been considered for the two-dimensional model tank, and three different filling levels under irregular motions have been imposed for the three-dimensional model tank. The density ratio between gas and liquid varies from the ratio of the ambient air and water to that of the actual LNG cargo container, and the different composition of gas is used for this variation. Based on the present experimental results, it is found that the decrease of sloshing pressure is predicted when the density ratio increases.

Determination of Mixing Ratio of Mixed Refrigerants and Performance Analysis of Natural Gas Liquefaction Processes (혼합냉매 혼합비에 따른 천연가스 액화공정 성능 비교)

  • Kim, Min Jin;Yi, Gyeong Beom;Liu, Jay
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.677-684
    • /
    • 2013
  • A mixed refrigerant cycle (MRC) has been widely used in liquefaction of natural gas because it is simple and easily operable with reasonable equipment costs. One of the important techniques in MRC is selection of a refrigerant mixture and decision of its optimum mixing ratio. In this work, it is examined whether mixture components (refrigerants) and their mixing ratio influence performance of general MRC processes. In doing this, mixture design and response surface method, which are well-known statistical techniques, are used to find optimal mixture refrigerants and their optimal mixing ratio that minimize total energy consumption of the entire liquefaction process. A MRC process using several refrigerants and various mixing ratios is simulated by Aspen HYSYS and mixture design and response surface method are implemented using Minitab. According to the results, methane ($C_1$), ethane ($C_2$), propane ($C_3$) and nitrogen ($N_2$) are selected as best mixture refrigerants and the determined mixture ratio (mole ration) can reduce total energy consumption by up to 50%.

Structural Analysis for Design of Anchor Straps for a Large-Scale LNG Storage Tank with Corner Protection and Inner Tank (코너프로텍션과 내조를 고려한 대용량 LNG 저장탱크 앵커스트랩의 구조설계를 위한 유한요소해석)

  • Jin, Chengzhu;Ha, Sung-Kyu;Kim, Seong-Jong;Lee, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1543-1548
    • /
    • 2011
  • Structural analysis is performed to design anchor straps for a large-scale-liquefied-natural-gas (LNG) storage tank with corner protection and an inner tank by considering structural integrity. Anchor straps made of 9% nickel steel are attached to the inner tank, corner protection, and concrete raft to prevent the failure of the inner tank during both normal and emergency operating conditions. Two finite element (FE) models were analyzed in this study. One is a stand-alone model of the anchor strap, while the other is an extended model of the substructure of the anchor strap, inner tank, and corner protection. Three-dimensional shell elements are used to effectively assess the bending and axial behavior of structures. The Tresca stress values in each part of the two models are calculated for operation under five different load-condition cases: normal operation, leakage of the LNG, hydro test, and two earthquake conditions.

Development of FPGA Based HIL Simulator for PMS Performance Verification of Natural Liquefied Gas Carriers (액화천연가스운반선의 PMS 성능 검증을 위한 FPGA 기반 HIL 시뮬레이터 개발)

  • Lee, Kwangkook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.7
    • /
    • pp.949-955
    • /
    • 2018
  • Hardware-in-the-loop (HIL) simulation is a technique that can be employed for developing and testing complex real-time embedded systems. HIL simulation provides an effective platform for verifying power management system (PMS) performance of liquefied natural gas carriers, which are high value-added vessels such as offshore plants. However, HIL tests conducted by research institutes, including domestic shipyards, can be protracted. To address the said issue, this study proposes a field programmable gate array (FPGA) based PMS-HIL simulator that comprises a power supply, consumer, control console, and main switchboard. The proposed HIL simulation platform incorporated actual equipment data while conducting load sharing PMS tests. The proposed system was verified through symmetric, asymmetric, and fixed load sharing tests. The proposed system can thus potentially replace the standard factory acceptance tests. Furthermore, the proposed simulator can be helpful in developing additional systems for vessel automation and autonomous operation, including the development of energy management systems.

The $CO_2$ Recovering Recipe used Oxy Combustion with the Submerged Natural Gas Burner (천연가스 수중연소기(SMV)에서 순산소연소를 활용한 $CO_2$ 회수방안)

  • Sohn, Whaseung;Kim, Hoyeon;Ha, Jongmann;Kim, Joonseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.157-157
    • /
    • 2010
  • 우리나라는 기후변화협약에 대응하기 위한 교토의정서를 비준한 국가로서, 아직 온실가스의 의무감축 대상 국가는 아니다. 그러나 2012년부터 시작될 교토의정서 2차 공약기간 중에 브라질, 중국 및 인도와 같이 2차 의무감축대상이 가장 유력시 되는 국가로 지목되고 있으므로, 이러한 변화에 능동적으로 대처할 수 있는 기술적, 사회적, 정책적 방안이 신속히 마련될 필요가 있다. CCS(carbon capture & storage)란 화석연료로 부터 연소시 대기 중으로 배출되는 온실가스($CO_2$)를 포집하여 재생 또는 지중, 해양에 저장하는 기술로서 국가녹색성장 핵심기술중의 하나로 분류되며, 대료적인 $CO_2$ 발생대상인 석탄화력발전소로 부터 $CO_2$ 회수방안, 회수, 처리관련 연구를 포함하여 국내외 적으로 활발한 연구가 이루어 지고 있다. 순산소 연소기술을 통한 $CO_2$ 회수, 처리기술은 연료(천연가스, 석탄, 석유)의 산화제를 공기대신 순도 95% 이상의 고농도 산소를 이용하여 순산소연소를 하며, 이때 발생하는 배가스의 대부분은 $CO_2$와 수증기로 구성되어 있다. 발생된 배가스의 약 70~80%를 다시 연소실로 재순환시켜 연소기의 열적 특성에 적절한 연소가 가능하도록 최적화함과 동시에 배가스의 $CO_2$ 농도를 80% 이상으로 농축시켜 회수를 용이하게 하며, 특히 공해물질은 NOx 발생량을 10ppM 이하로 줄일 수 있다. 천연가스가 생산되는 LNG기지에서 LNG를 기화시키기 위하여 해수식 기화기(ORV : Open Rack Vaporizer와 수중연소식 기화기(SMV ; Submerged Combustion Vaporizer)를 사용하고 있으며, 특히 SMV는 버너를 이용하여 $-162^{\circ}C$ LNG를 $10^{\circ}C$의 LN로 기화시키는 설비로서 이때 연소시 $CO_2$를 상당량 발생시킨다. 본 논문에서는 SMV에서 순산소 연소방식을 적용하여 연료인 천연가스를 연소시키고, 이때 발생되는 $CO_2$와 수분이 주 성분인 배가스를 연소기에 재순환시켜, 연소실내 고온문제를 해결하며, 최종적으로 배가스중 $CO_2$$-162^{\circ}C$의 LNG 냉열을 이용하여 고순도의 액체 $CO_2$로 액화시키므로서 $CO_2$의 회수, 처리문제를 해결하는 방식을 소개하고자 한다. 이러한 방식은 천연가스에서 발생되는 $CO_2$ 회수를 LNG 냉열을 활용하므로서 폐열을 활용하는 에너지 효율적인 문제와 사용가능한 고순도 $CO_2$로 회수하므로서 환경적인 문제를 처리하는 기술이라 할 수 있다.

  • PDF

A Study on Safety Assessment for Low-flashpoint and Eco-friendly Fueled Ship (친환경연료 선박의 가스누출 피해저감을 위한 연구)

  • Ryu Bo Rim;Duong Phan Anh;Kang Ho Keun
    • Journal of Navigation and Port Research
    • /
    • v.47 no.1
    • /
    • pp.25-36
    • /
    • 2023
  • To limit greenhouse gas emissions from ships, numerous environmental regulations and standards have been taken into effect. As a result, alternative fuels such as liquefied natural gas (LNG), liquefied petroleum gas (LPG), ammonia, and biofuels have been applied to ships. Most of these alternative fuels are low flashpoint fuels in the form of liquefied gas. Their use is predicted to continue to increase. Thus, management regulations for using low flash point fuel as a ship fuel are required. However, they are currently insufficient. In the case of LNG, ISO standards have been prepared in relation to bunkering. The Society for Gas as a Marine Fuel (SGMF), a non-governmental organization (NGO), has also prepared and published a guideline on LNG bunkering. The classification society also requires safety management areas to be designated according to bunkering methods and procedures for safe bunkering. Therefore, it is necessary to establish a procedure for setting a safety management area according to the type of fuel, environmental conditions, and leakage scenarios and verify it with a numerical method. In this study, as a feasibility study for establishing these procedures, application status and standards of the industry were reviewed. Classification guidelines and existing preceding studies were analyzed and investigated. Based on results of this study, a procedure for establishing a safety management area for bunkering in domestic ports of Korea can be prepared.

Heat Transfer Characteristics of Plate-fin Heat Exchanger Using LNG FPSO Liquefaction Process (LNG FPSO 액화공정에 적용되는 플레이트 핀 열교환기의 열전달 특성)

  • Yoo, Sun-Il;Kim, Hyun-Woo;Jung, Young-Kwon;Yoon, Jung-In;Park, Seung-Ha;Kim, Chang-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.798-805
    • /
    • 2010
  • There are no domestic researches of plate fin heat exchanger in the field of cryogenic such as LNG FPSO liquefaction plant. In this study, condensing heat transfer characteristics of nitrogen according to three kinds of fin type in the plate fin heat exchanger were analyzed through simulation and experiment to secure independent technologies. In the simulation, nitrogen was condensed at 69bar and $-140^{\circ}C$ in serrated and wavy fin of plate-fin heat exchanger. The serrated fin shows the highest value of local heat transfer coefficient, followed by wavy and plain fin. The experimental results were shown errors less than 12% comparing with the simulation results.