• Title/Summary/Keyword: 천연섬유 복합재

Search Result 27, Processing Time 0.023 seconds

Algae Based Energy Materials (해조류를 이용한 친환경 에너지소재)

  • Han, Seong-Ok;Kim, Hong-Soo;You, Yoon-Jong;Kim, Hee-Yeon;Jeong, Nam-Jo;Seo, Young-Bum
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.77-78
    • /
    • 2008
  • 최근 이산화탄소 흡수원으로 해조류의 배양과 이산화탄소 고정에 대한 영향 분석연구가 세계적으로 활발하게 진행되고 있다. 또한, 해조류에서 바이오에너지를 얻기 위한 연구와 해조류의 구성성분인 섬유, 당 및 지질을 이용하기 위한 연구도 다양하게 진행되고 있다. 해조류 섬유는 주로 종이 및 바이오복합재료 제조에 사용되며 추출물은 식품 등에 사용될 수 있다. 특히, 해조류 섬유는 셀룰로오스 섬유와 유사한 특성을 가지기 때문에 바이오복합재료의 천연섬유 보강재로서 사용이 가능하다. 바이오복합재료는 천연섬유를 보강재로 사용한 에너지절약과 친환경 특성을 가진 고분자복합재료로서 현재 자동차 및 건축물의 내장재로 사용되고 있는 유리섬유 보강 고분자복합재료를 대체할 수 있는 신소재이다. 본 논문에서는 해조류 기반 친환경 에너지소재의 세계적 연구동향 및 해조류 섬유를 이용한 신소재 개발연구로서 홍조류 섬유 보강 바이오복합재료에 대한 연구결과를 소개하고자 한다.

  • PDF

Structural Test Analysis Study for Manufacturing of Flax Fiber Composite Blades for 30kW Wind Turbines (30kW 풍력터빈용 아마섬유 복합재 블레이드 제조를 위한 구조 시험 분석 연구)

  • Hye-Jin Shin;Ji-Hyun Lee;Sung-Young Moon;Jounghwan Lee
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.32-36
    • /
    • 2023
  • Recently, as global environmental issues for sustainable development, such as carbon neutrality, have emerged, disposal methods of glass fiber composites, a material of existing wind turbines, have become a problem. To solve this problem, in this study, 30kW wind turbine blades were manufactured using flax fiber-based composites, which are eco-friendly natural fiber composites that can replace existing glass fiber composites, and their suitability was evaluated. First, mechanical strength tests were conducted to verify the feasibility of using eco-friendly natural flax fiber composites as a wind turbine blade material, and as a result, better strength were confirmed compared to previous studies on the properties of flax fiber composites. In addition, the suitability was confirmed through a static strength performance evaluation test to measure the static strength of the flax fiber composite blade using the manufactured 30kW class flax fiber composite blade.

Recent Developments in Natural Fiber Reinforced Composites (천연섬유보강 복합재료의 최근 연구 개발)

  • Mirza, Foisal Ahmed;Afsar, Ali Md.;Kim, Byung-Sun;Song, Jong-Il
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.41-49
    • /
    • 2009
  • Natural fiber reinforced composites are emerging as low-cost, lightweight, recyclable, and eco-friendly materials. These are biodegradable and non-abrasive. Due to eco-friendly and biodegradable characteristics of natural fibers, they are being considered as potential candidates to replace the conventional fibers. The chemical, mechanical, and physical properties of natural fibers have distinct features depending upon the cellulose content of the fibers which varies from fiber to fiber. The mechanical properties of composites are influenced mainly by the adhesion between matrix and fibers. Several chemical and physical modification methods of fiber surface were incorporated to improve the tiber-matrix adhesion resulting in the enhancement of mechanical properties of the composites. This paper outlines the works reported on natural tiber reinforced composites with special reference to the type of fibers, polymer matrix, processing techniques, treatment of fibers, and fiber-matrix interface.

A Study on the Fabrication and Mechanical Properties Evaluation of Natural Fiber Composites added Eco-friendly Materials (친환경 소재를 첨가한 천연섬유 복합재의 제조 및 기계적 물성 평가 연구)

  • Kim, Jae-Cheol;Lee, Dong-Woo;Prabhakar, M.N.;Song, Jung-Il
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.213-219
    • /
    • 2020
  • Recently, global facing environmental issues have been raised caused by plastic waste. Hence, increasing the demand for interest in environmentally friendly materials. In this row, research on engineering composite materials also replacing the synthetic reinforcement by introducing natural fibers. However, focus on the strength and interfacial adhesion between matrix and reinforcement is very essential in natural fiber composite, which is insufficient in the literature. There are number of approaches for improving the mechanical strength of the composites, one of the common methods is to reinforce additive nanoparticles. The present investigation, bio-additives were synthesized utilizing bio-waste, cheap, bio-degradable sea-weed powder that could replace expensive nanomaterials and reinforced into the CFRP composite through Hand lay-up followed by a vacuum process. Mechanical properties were evaluated and analyzed through microanalysis. The results concluded that synthesized additives are effective for improving mechanical properties such as tensile, flexural, impact, and shear strength. Overall, the results confirmed that the fabricated composites have potential applications in the field of engineering applications.

Interfacial Adhesion of Silk/PLA Composite by Plasma Surface Treatment (플라즈마 표면처리에 의한 Silk/PLA 복합재료의 계면접착)

  • 추보영;한철희;권미연;이승구;박원호;조동환
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.189-190
    • /
    • 2003
  • 섬유강화 복합재료의 사용이 점점 증가함에 따라 구조용 및 내장재 등으로 사용된 수명이 다한 섬유강화 복합재료의 사용후 폐기가 문제가 되고 있다. 특히, 자동차 부품, 건축자재 및 전기절연재 등으로 가장 많이 사용되는 유리섬유 복합재료의 폐기물이 급격히 증가하여 환경 오염문제가 심각해지고 있어서, 환경 친화적인 새로운 복합재료에 대한 필요성이 제기되어 왔다. 따라서 본 연구에서는 천연섬유를 이용한 천연섬유/생분해성 수지계 복합소재를 대상으로 환경적합성이 우수하고 자연환경에서 완전한 생분해성을 가지며, 유리 섬유복합재료를 대체할 물성이 우수한 새로운 Biocomposite를 개발하고자 하였다. (중략)

  • PDF

A Study on Fire Resistance of Abaca/Vinyl-ester Composites (마닐라 삼/비닐에스터 복합재료의 내화성 연구)

  • Lee, Dong-Woo;Park, Byung-Jin;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.59-64
    • /
    • 2017
  • Eco-convivial composites with improved properties are essential to present polymer scenario and can be made easily by replacing partially/completely renewable materials either matrix or reinforcement along with few % of additives. In these investigations, Abaca fabric have been used as reinforcement for manufacturing of Vinyl ester composites through VARTM technique and study the effect of alkali surface treatment of abaca fabric and flame retardant additives i.e., ammonium polyphosphate (APP) with halloysite nano-clay (HNT) on mechanical and flame retardant properties. The results concluded that, surface treatment deceased the hydrophilic nature of fabric and enhanced the interfacial bonding with hydrophobic matrix and eventually increased mechanical properties slightly of developed composites. Similarly, the flame retardancy of the composites improved significantly and increases the burning time by varying the wt% of filler concentration.

Parametric Study for Hole Machining in Natural Fiber Composites (천연섬유 복합재료의 홀 가공을 위한 파라메트릭 연구)

  • Lee, Dong-Woo;Oh, Jung-Suck;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.35-40
    • /
    • 2017
  • In this study, natural fiber composites including flax fiber reinforcement was manufactured. It was tried to find optimum design of drill and machining factor for minimizing the damage during hole machining in natural fiber composites. Taguchi optimization was used for minimizing the number of experiments and evaluation of the effect of machining factor during hole machining in natural fiber composites. The experimental results indicate that the newly designed drill distributes cutting resistance well and minimizes surface roughness and produces fine surfaces. Developed new drill has been dispersed in the cutting resistance during processing, it was possible to obtain the smooth hole surface. Also, it was found that optimal rotational speed and feed rate of drill for hole machining.

Mechanical Properties of Alkali Treated Kenaf Fiber Filled PP Bio-Composites (알칼리 처리된 Kenaf 섬유가 충전된 Polypropylene/Kenaf 바이오복합재의 기계적 특성)

  • Kim, Samsung;Lee, Byoung-Ho;Kim, Hyun-Joong;Oh, Sei Chang;Ahn, Sye-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.222-230
    • /
    • 2009
  • This study was to investigate the effect of alkali treatment for long kenaf fiber to improve fiber surface characterics by removal of wax, lignin and hemicellulose which affect adversely for matrix union. SEM observation was also studied to check out the interface adhesion improvement by the alkali pre-treatment. From the result, interface coherence increased by 3% alkali pre-treatment and reached a maximum by 5% alkali pre-treatment. However, the 3% the bio-composites treated with 3% alkali was highest tensile and flexural strength than other.

A study on the mechanical Characteristics of Bamboo fiber Composites (대나무섬유 복합재의 기계적 특성 변화)

  • Jung, Seong-Hyun;Han, Hyun-Kak;Park, Chan-Wong;Lee, Ki-Woong;Joo, Deuk-Ki
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05a
    • /
    • pp.448-451
    • /
    • 2012
  • 본 연구에서 matrix간의 계면 결합력을 불리하게 작용하는 Wax성분이나 Lignin, Hemi-Cellulose등의 제거를 위해 화학적 개질방법중인 NaOH, Acetic acid, Silane으로 처리하여 기질 고분자의 계면의 영향을 알아보고 SEM을 이용하여 형태학적 변화와 열적특성 변화를 관찰하였다. 형태학적 변화에서는 NaOH, Acetic acid 처리보다 Silane처리가 계면결합력이 증가하여 기계적 물성이 증가되었다는 것을 볼수 있었고, 열분석에서는 NaOH, Acetic acid, Silanec 처리가 유사하게 나타났지만, 복합재를 전처리하지 않은것보다 기질고분자와 천연섬유간의 계면 결합은 전처리하는 것이 결합에 있어서 좋다는 결과를 확인하였다.

  • PDF