• Title/Summary/Keyword: 천연섬유복합재료

Search Result 44, Processing Time 0.012 seconds

Recent Developments in Natural Fiber Reinforced Composites (천연섬유보강 복합재료의 최근 연구 개발)

  • Mirza, Foisal Ahmed;Afsar, Ali Md.;Kim, Byung-Sun;Song, Jong-Il
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.41-49
    • /
    • 2009
  • Natural fiber reinforced composites are emerging as low-cost, lightweight, recyclable, and eco-friendly materials. These are biodegradable and non-abrasive. Due to eco-friendly and biodegradable characteristics of natural fibers, they are being considered as potential candidates to replace the conventional fibers. The chemical, mechanical, and physical properties of natural fibers have distinct features depending upon the cellulose content of the fibers which varies from fiber to fiber. The mechanical properties of composites are influenced mainly by the adhesion between matrix and fibers. Several chemical and physical modification methods of fiber surface were incorporated to improve the tiber-matrix adhesion resulting in the enhancement of mechanical properties of the composites. This paper outlines the works reported on natural tiber reinforced composites with special reference to the type of fibers, polymer matrix, processing techniques, treatment of fibers, and fiber-matrix interface.

Polypropylene-Natural Fiber Composites: Rheological Properties during Mixing and Thermal Properties (폴리프로필렌-천연섬유 복합재료의 혼합시 유변학적 물성 및 열적 특성)

  • Kim, Sam-Jung;Yoo, Chong Sun;Kim, Gue-Hyun;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.9 no.4
    • /
    • pp.24-29
    • /
    • 2008
  • Polypropylene-natural fiber composites have been prepared and their rheological properties during mixing and thermal properties were investigated. Two types of natural fibers (cotton fiber and wood fiber) were compared. On increasing fiber contents, the torque values of composites were increased, where the cotton fiber exhibited higher increase in torques. The torque values of composites were higher as the MI of PP decreased. X-ray diffraction and differential scanning calorimetry results showed an increase in the crystallization temperature but a decrease of crystallinity of the PP/natural fiber composites on increasing fiber contents.

  • PDF

Algae Based Energy Materials (해조류를 이용한 친환경 에너지소재)

  • Han, Seong-Ok;Kim, Hong-Soo;You, Yoon-Jong;Kim, Hee-Yeon;Jeong, Nam-Jo;Seo, Young-Bum
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.77-78
    • /
    • 2008
  • 최근 이산화탄소 흡수원으로 해조류의 배양과 이산화탄소 고정에 대한 영향 분석연구가 세계적으로 활발하게 진행되고 있다. 또한, 해조류에서 바이오에너지를 얻기 위한 연구와 해조류의 구성성분인 섬유, 당 및 지질을 이용하기 위한 연구도 다양하게 진행되고 있다. 해조류 섬유는 주로 종이 및 바이오복합재료 제조에 사용되며 추출물은 식품 등에 사용될 수 있다. 특히, 해조류 섬유는 셀룰로오스 섬유와 유사한 특성을 가지기 때문에 바이오복합재료의 천연섬유 보강재로서 사용이 가능하다. 바이오복합재료는 천연섬유를 보강재로 사용한 에너지절약과 친환경 특성을 가진 고분자복합재료로서 현재 자동차 및 건축물의 내장재로 사용되고 있는 유리섬유 보강 고분자복합재료를 대체할 수 있는 신소재이다. 본 논문에서는 해조류 기반 친환경 에너지소재의 세계적 연구동향 및 해조류 섬유를 이용한 신소재 개발연구로서 홍조류 섬유 보강 바이오복합재료에 대한 연구결과를 소개하고자 한다.

  • PDF

Trends and Perspective for Eco-friendly Composites for Next-generation Automobiles (차세대 자동차용 친환경 복합재료의 동향 및 전망)

  • Eunyoung Oh;Marcela Maria Godoy Zuniga;Jonghwan Suhr
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.115-125
    • /
    • 2024
  • As global issues and interest in the environment increase, the transition to eco-friendly materials is accelerating in the automobile industry. In the automotive industry, eco-friendly composite materials are mainly used in various interior and exterior components, reducing the reliance on traditional petroleum-based materials. In particular, natural fiber composites help reduce fuel consumption and greenhouse gas emissions by making vehicles lighter. Additionally, they boast superior thermal properties and durability compared to non-recyclable composite materials, making them suitable for automotive interior parts. Furthermore, reduced production costs and sustainability are key advantages of natural fiber composites. The eco-friendly composites market is expected to grow to $86.43 billion at a CAGR of 15.3% from 2022 to 2030, and the natural fiber composites market is predicted to grow at a CAGR of 5.3% from 2023 to 2028 to $424 million. In this review paper, we explore research trends in nextgeneration natural fiber composite materials for automobiles and their application in the actual automobile industry.

Effect of Kenaf Fiber Loading on the Properties of Natural Fiber/Natural Rubber Composites (천연섬유/천연고무 복합재료의 특성에 미치는 Kenaf 섬유함량의 영향)

  • Cho, Yi-Seok;Cho, Dong-Hwan
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.186-194
    • /
    • 2011
  • Natural fiber/natural rubber composites were fabricated by uniformly compounding natural rubber and cellulose- based natural fiber kenaf and then by compression molding. The effect of kenaf fiber content on their vulcanization behavior, hardness, tensile properties, tear strength and static and dynamic properties was investigated. The contents of kenaf fiber in the composites were 0, 5, 10, 15, and 20 phr, compared to natural rubber and additives. The result indicated that various properties of natural rubber depended on the kenaf fiber content. With increasing kenaf fiber content, the torque for vulcanization of natural rubber was increased whereas the vulcanization time was reduced as well. The hardness, tensile modulus and tear strength of kenaf/natural rubber composites were gradually decreased with the fiber content whereas the tensile strength and elongation at break were decreased. Also, with increasing the kenaf fiber content the dynamic property of natural rubber was changed more greatly than the static property. The loss factor, which is closely related with the damping or absorption of the energy given to natural rubber, was proportionally increased with the fiber content.

Interfacial Adhesion of Silk/PLA Composite by Plasma Surface Treatment (플라즈마 표면처리에 의한 Silk/PLA 복합재료의 계면접착)

  • 추보영;한철희;권미연;이승구;박원호;조동환
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.189-190
    • /
    • 2003
  • 섬유강화 복합재료의 사용이 점점 증가함에 따라 구조용 및 내장재 등으로 사용된 수명이 다한 섬유강화 복합재료의 사용후 폐기가 문제가 되고 있다. 특히, 자동차 부품, 건축자재 및 전기절연재 등으로 가장 많이 사용되는 유리섬유 복합재료의 폐기물이 급격히 증가하여 환경 오염문제가 심각해지고 있어서, 환경 친화적인 새로운 복합재료에 대한 필요성이 제기되어 왔다. 따라서 본 연구에서는 천연섬유를 이용한 천연섬유/생분해성 수지계 복합소재를 대상으로 환경적합성이 우수하고 자연환경에서 완전한 생분해성을 가지며, 유리 섬유복합재료를 대체할 물성이 우수한 새로운 Biocomposite를 개발하고자 하였다. (중략)

  • PDF

Parametric Study for Hole Machining in Natural Fiber Composites (천연섬유 복합재료의 홀 가공을 위한 파라메트릭 연구)

  • Lee, Dong-Woo;Oh, Jung-Suck;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.35-40
    • /
    • 2017
  • In this study, natural fiber composites including flax fiber reinforcement was manufactured. It was tried to find optimum design of drill and machining factor for minimizing the damage during hole machining in natural fiber composites. Taguchi optimization was used for minimizing the number of experiments and evaluation of the effect of machining factor during hole machining in natural fiber composites. The experimental results indicate that the newly designed drill distributes cutting resistance well and minimizes surface roughness and produces fine surfaces. Developed new drill has been dispersed in the cutting resistance during processing, it was possible to obtain the smooth hole surface. Also, it was found that optimal rotational speed and feed rate of drill for hole machining.

Investigation of the Effect of Seaweed Nanofibers in Jute Fiber-reinforced Composites as an Additive (해초 나노섬유가 황마섬유 강화 복합재료의 기계적 물성에 미치는 영향)

  • Kim, Jae-Cheol;Lee, Dong-Woo;Song, Jung-Il
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.398-403
    • /
    • 2018
  • Recently, environmental pollution caused by plastic waste, ecosystem disturbance of micro-plastics and human body accumulation are becoming big problems. In order to replace the traditional plastic, eco-friendly resin and natural fiber-based composite materials have been developed, but they have a disadvantage that their mechanical properties are significantly lower than those of synthetic fiber-based composites. In this study, eco - friendly nanofiber was extracted from seaweed and used as an additive in order to improve the mechanical properties of jute fiber-reinforced composites. Through the hand lay-up process, the composites were fabricated, and it was confirmed that the nanofiber was effective in improving the mechanical properties of natural fiber composites through tensile, bending and drop weight impact tests.

Water Treatment Effect of Bamboo Fiber on the Mechanical Properties, Impact Strength, and Heat Deflection Temperature of Bamboo Fiber/PLA Biocomposites (대나무섬유/PLA 바이오복합재료의 기계적 특성, 충격강도 및 열변형온도에 미치는 대나무섬유 수처리의 영향)

  • Cho, Yong Bum;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.17 no.3
    • /
    • pp.96-103
    • /
    • 2016
  • In this work, pellets consisting of cellulose-based natural fiber bamboo and poly(lactic acid) (PLA) was prepared by extrusion process and then bamboo fiber/PLA biocomposites with various fiber contents were produced by injection molding process. The water treatment effect of bamboo fibers on the flexural, tensile, and impact properties and heat deflection temperature of the biocomposites were investigated. The thermal stability of bamboo and the flexural properties, tensile modulus, and impact strength depended on the presence and absence of water treatment as well as on the fiber content, whereas the heat deflection temperature are influenced mainly by water treatment. The increase of the mechanical and impact properties of biocomposites is ascribed to the improvement of the interfacial adhesion between the bamboo fibers and the PLA matrix by the water treatment. The result suggests that the pre-treatment of natural fibers by using water, which is environment-friendly and labor-friendly, may contribute to enhancing the performance of biocomposites.

A Study on the Fabrication and Mechanical Properties Evaluation of Natural Fiber Composites added Eco-friendly Materials (친환경 소재를 첨가한 천연섬유 복합재의 제조 및 기계적 물성 평가 연구)

  • Kim, Jae-Cheol;Lee, Dong-Woo;Prabhakar, M.N.;Song, Jung-Il
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.213-219
    • /
    • 2020
  • Recently, global facing environmental issues have been raised caused by plastic waste. Hence, increasing the demand for interest in environmentally friendly materials. In this row, research on engineering composite materials also replacing the synthetic reinforcement by introducing natural fibers. However, focus on the strength and interfacial adhesion between matrix and reinforcement is very essential in natural fiber composite, which is insufficient in the literature. There are number of approaches for improving the mechanical strength of the composites, one of the common methods is to reinforce additive nanoparticles. The present investigation, bio-additives were synthesized utilizing bio-waste, cheap, bio-degradable sea-weed powder that could replace expensive nanomaterials and reinforced into the CFRP composite through Hand lay-up followed by a vacuum process. Mechanical properties were evaluated and analyzed through microanalysis. The results concluded that synthesized additives are effective for improving mechanical properties such as tensile, flexural, impact, and shear strength. Overall, the results confirmed that the fabricated composites have potential applications in the field of engineering applications.