• Title/Summary/Keyword: 천연다이아몬드

Search Result 49, Processing Time 0.039 seconds

A Study on the Cutting Characteristics of Glass Fiber Reinforced Plastics by Tool Materials and Type (유리섬유강화 플라스틱의 공구재질 및 형상에 따른 절삭특성에 관한 연구)

  • An, Sang-Ook;Noh, Sang-Lai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1216-1224
    • /
    • 1996
  • In the use of glass fiber reinforced plastics it is often necessary to cutting the components, but the cutting GFRP is often made difficult by the delamination of composites and the short tool life. In this paper, the machinability of GFRP by mean of tool materials and type was experimentally investigated. By proper selection of cutting tool material and type excellent machining of this workpiece is achieved. The surface quality relate closely with the feed rate and cutting tools.

Study on the Optical Characteristics of Gem Diamonds (보석용 다이아몬드의 타입별 광학적 특성 연구)

  • Shon, Shoo-Hack;Kim, Jong-Rang;Bai, Jong-Hyuck;Kim, Jong-Gun;Kim, Jeong-Jin;Jang, Yun-Deuk
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.2 s.52
    • /
    • pp.91-96
    • /
    • 2007
  • Notable characteristics are found between diamond types and observed optical properties from the analysis of natural diamonds in market as a gem mineral. All of the diamond samples observed are classified into type Ia, which can be subdivided type IaA containing only A aggregates, type IaB containing only B aggregates, and type IaAB containing both A aggregates and B aggregates in detail. As B aggregates more relatively increase than A aggregates. It is possible to find out that an increase of N3 center, an enhancement of blue fluorescence reaction, and an intensification of irregularity in the strain pattern. Because the property change of diamond mentioned above are consistent with optical phenomenon caused by dislocation and with N3 center produced by changes of nitrogen aggregation process from A aggregate to B aggregate. There is a close relation between diamond type and optical properties.

A Study of Aluminum Reflector Manufacturing in Diamond Turning Machine (다이아몬드 터닝머신을 이용한 알루미늄반사경의 절삭특성)

  • 김건희;고준빈;김홍배;원종호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.1-5
    • /
    • 2002
  • A 110 m diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fsbricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an A1 substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of Ra=λ/12(λ=632.8nm) has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated A1 alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

Gemological Identification of Black Diamonds Roughs from Zimbabwe (짐바브웨산 블랙다이아몬드 원석의 보석학적 감별연구)

  • Song, Oh-Sung;Kim, Jun-Hwan;Kim, Ki-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3054-3059
    • /
    • 2009
  • Natural black diamonds of single crystal, polycrystalline, and agglomerated roughs become important for their industrial and gem stone application. We performed the conventional gemological tests of thermal diffusion, apparent density, scratch test, and magnification test as well as the advanced tests of Raman spectroscopy, X-ray diffraction test and Lang topography. We conclude that scratch test with SiC paper was the most efficient method in view point of speed and cost. Raman spectroscopy and XRD were useful for identification of diamond while Lang topography offered a good visualization method of the grain structure of polycrystalline black diamond roughs.

A study on the manufacture of Large Collimation Reflector using SPDT (SPDT를 이용한 대구경 Collimation Reflector 가공 연구)

  • 김건희;홍권희;김효식;박지영;박순섭;원종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.897-900
    • /
    • 2002
  • The collimation mirror will be used for thermal vacuum testing of spacecraft. The reflection mirror system to generate parallel beam inside the thermal vacuum chamber. A 600mm diameter aspheric Collimation mirror was fabricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machining, but not polishable due to its ductility. Aspheric large collimation reflector without a conventional polishing process, the surface roughness of 10nmRa, and the from error of $\lambda/2 ~\lambda/4(\lambda$ =632.8 nm) for reference curved surface 600 mm has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of A16061-T651 and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

  • PDF

A Study on the Surfaces Machining Characteristics of Ultra-precision through SEM Measurement (SEM 측정법에 의한 초정밀 표면가공 특성연구)

  • 강순준;오상록;이갑조;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.34-41
    • /
    • 2004
  • The purpose of this paper is to look at the characteristics of surface finishing which is one of the form accuracies and to obtain the fundamental technical data from the process of machining with diamond tool through experiment and theoretical analysis. The experiments were conducted with domestic made ultra-precision machine and MCD.PCD tool, with aluminum alloyed material and brass being used for the work pieces. The goal of the size accuracy was set to 100nm. The most suitable tool nose radius and machining conditions were selected, and the variations of the surface roughness were observed using SEM method while machining the distance of up to 500km. These data were evaluated and they examined the variation of the machined surfaces while cutting up to 500km of machining distance. At the same time, the state for the wear of diamond tool nose was analyzed and carefully examined through the newest measuring device. Additionally, the characteristics of ultra-precision machining technology were studied through visual analysis.

  • PDF

Cutting Characteristics of Oxygen-Free Using the Ultra Precision Machining (초정밀가공기를 이용한 무산소동 절삭특성)

  • 고준빈;김건희;원종호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.120-126
    • /
    • 2002
  • The needs of ultra-precisely machined parts are increasing more and more. But the experimental data required to ultra precision machining of nonferrous metal is insufficient. The behavior of cutting in micro cutting area is different from that of traditional cutting because of the size effect. Copper is widely used as optical parts such as LASER reflector's mirror and multimedia instrument. In experimental, after oxygen-free copper is machined by ultra precision machine with natural mono crystal diamond tool (NCD) and synthetic poly crystal diamond tool (PCD), we compared chip formation and tool's wear according to used tool. Also, we researched optimized cutting condition with the results measured according to cutting condition such as spindle speed, feed rate and depth of cut. As a result, the optimal working condition that makes good surface roughness is obtained. The surface roughness is good when spindle speed is above 80 m/min, and feed rate is small and depth of cut is above 0.5 ${\mu}{\textrm}{m}$. In cutting of klystron anode and cavity 3.2 nmRa of surface roughness is obtained.

Manufacturing Technology of Lenticular Lens Mold by Shaping (세이핑에 의한 렌티큘러 렌즈 금형 가공)

  • Je T. J.;Choi D. S.;Lee E. S.;Shim Y. S.;Kim E. Z.;Na K. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.11a
    • /
    • pp.249-254
    • /
    • 2004
  • 광의 효율적 사용을 위해 표면에 마이크로 그루브가 새겨진 고성능 광학 부품의 개발이 활발하고, 이들 부품의 다량 생산을 위한 초정밀 금형제조기술이 각광을 받고 있다. 최근의 초정밀 미세 기계가공의 경우 간단한 공정으로 이러한 마이크로 그루브 금형을 제작할 수 있다. 특히 조명각 변조용 렌티큘러 렌즈와 같이 실린더형 그루브 금형의 경우에는 기존의 Lithography, MEMS, LIGA 등 광 에너지를 이용한 다른 제조방법들에서는 가공하기 어려운 점이 있으나, 기계가공에서는 쉽게 제작가능한 장점이 있다. 본 연구에서는 이러한 미세기계가공기술의 장점을 활용하여 U 형 마이크로 그루브를 가진 Lenticular 렌즈용 금형을 가공하고자 하였다. 가공에는 3 축 구동의 초정밀 미세 복합가공기와 단결정 천연 다이아몬드공구가 사용되었고, 가공방식은 마이크로 세이핑 공정을 적용하였으며, 가공 금형 재료에는 Brass와 무전해 Nickel이 사용되었다. 실험을 통하여 금형가공시의 절삭력, 칩 형상, 가공표면 등의 분석이 수행되었으며 이를 기반으로 여러 가지 가공문제점을 해결하고, 최종적으로 양호한 렌티큘러렌즈용 금형을 가공하였다.

  • PDF

Compression Study on a Synthetic Goethite (합성 괴타이트에 대한 압축실험)

  • Kim, Young-Ho;Hwang, Gil-Chan;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.325-330
    • /
    • 2009
  • High pressure x-ray diffraction study was performed on a synthetic FeOOH-goethite to check out its compressibility at room temperature. Angular dispersive x-ray diffraction method was employed using a symmetrical diamond anvil cell with synchrotron radiation. Bulk modulus was determined to be 222.8 GPa under assumption of $K_{T'}$ of 4.0. This value is too high comparing with the previously published values from natural samples. It has been discussed the possible causes to incur its high bulk modulus value according to the production conditions.