• Title/Summary/Keyword: 천연가스분사

Search Result 54, Processing Time 0.035 seconds

Experimental Study on Natural Gas Conversion Vehicle(2) - Evaluation of Injection System (천연가스 개조 승용차에 대한 실험적 연구(2) - 분사 시스템 평가)

  • Kim, Hyung-Gu;Kwon, Suntae;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.444-453
    • /
    • 2015
  • In the previous study, several problems were observed in a NG conversion vehicle, which were fail of air-fuel ratio closed loop control, aggravated fuel economy, increased harmful emission and declined roadability. It was provisionally supposed that the mismatch of injection system with the engine caused these performance deterioration. In this context, the characteristics of fuel injection system of commercial conversion kit for NG were investigated experimentally varying the engine speed, fuel rail pressure and volume. The results are as follows; The injection quantity decreases as the engine speed increases due to the extremely small rail volume of the presenting system and flow rate of No. 2 injector are always lower than that of the other ones regardless of the speed under the dynamic operation condition. Furthermore the existing system does not meet the required fuel quantity for the normal engine operation over 3000 RPM. On the other hands, the large rail volume systems ease and/or eliminate the difference of injection quantity between the injectors according to the speed variation, however, these systems decrease injection flow rate and still cannot supply sufficient fuel. Finally, suitable combination of the higher rail pressure and the larger rail volume might be a solution about these problems.

A study on expansion of lean burn limit with direct injection of the heavy-duty CNG engine (대형 CNG기관의 직접분사화에 의한 희박한계확장)

  • Park, Jung-Il;Chung, Chan-Moon;Noh, Ki-Chul;Lee, Jong-Tai
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3282-3287
    • /
    • 2007
  • Lean combustion is one of the most promising method for increasing engine efficiency and reducing the exhaust emission from SI gas engines. Due to the possibility of partial burn and misfire, however, under lean burn operation, stable flame kernel formation and fast burn rate are needed to guarantee a successful subsequent combustion. Experiment data were obtained on a single-cylinder CNG fueled SI engine to investigate the effect of direct injection, spark timing and variation of injection timing. Experimental results show that lean burn limit is ${\lambda}$=1.3 with port injection, and expansion of lean burn limit ${\lambda}$=1.4 with direct injection method, due to increase of turbulence intensity in cylinder and stratified charge. Combustion duration in lean region is improved by using the variation of injection timing.

  • PDF

Distributed and Dispersed Power Resources : Paradigm Shift of Energy Technology (에너지 기술의 패러다임 전환 : 분산형 전원)

  • 김형택;신영균;천원기
    • Journal of Energy Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • 전력 사업 구조 개편과 전력계통 신뢰도에 대한 우려 증대, 풍부하고 저렴한 천연가스, 새로운 대기 오염 규제, 부정전전원의 가치 증대로 인하여 분산형 발전의 수요가 증가하고 있다. 본고에서는 미국의 사례를 중심으로 분사형 전원의 현황을 개략적으로 살펴보고 핵심기술인 왕복동엔진, 가스터빈, 마이크로터빈, 연료전지, 태양광발전 기술들의 특징, 장점, 경제성 등을 서술하고 이 기술들의 활용범위 및 분산형 시스템으로서의 적합성에 대하여 논하며 관련 연구개발, 기존 전력망과의 연계, 문제점과 전망에 대해서 살펴보고자 한다.

  • PDF

Study on Full Load Operation Characteristics and Thermal Efficiency of 1.4L Turbo CNG SI Engine (1.4L급 터보 CNG SI엔진의 전부하 운전 특성 및 열효율에 대한 연구)

  • Bae, Jong-Won;Park, Cheol-Woong;Lee, Jeong-Woo;Kim, Yong-Rae;Kim, Chang-Gi;Lee, Sun-Youp;Lee, Jin-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.34-39
    • /
    • 2018
  • Natural gas is attracting attention as an alternative to existing fossil fuels. Natural gas has a high octane number. Therefore, knocking does not occur even if the compression ratio is increased, so that the thermal efficiency and the output can be improved. And it is relatively easy to apply the natural gas supply system to the internal combustion engine hardware system. In this study, a gasoline direct injection turbo engine was converted into a natural gas port injection type turbo engine. Therefore, the combustion and performance of the engine are measured and compared comprehensively in the region where the turbo operates.

Preliminary Estimates on the Performance and the NOx Emission Characteristics of the Gas Turbine of IGCC PDU (IGCC용 PDU급 가스터빈의 성능 및 NOx배출 특성에 관한 예비평가)

  • Kim, Yong-Chul;Lee, Chan;Lee, Han-Goo;Yun, Yong-seung
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.05a
    • /
    • pp.73-78
    • /
    • 1998
  • 상용 IGCC발전소의 특징적 공정흐름에 대한 분석기술의 확보를 위해 PDU급 IGCC발전계통에 대한 성능평가와 NOx 배출에 대한 모델링을 수행하였다. 향후 IGCC발전소 건설시 선정가능성이 있는 4가지 가스화 공정에서 생산되는 석탄가스를 연료로 하고, 그 발전계통의 대상 가스터빈은 산업현장에서 사용되고 있는 GE사의 LM1600PA를 선정하였다. 석탄가스는 천연가스에 비해 가스터빈의 효율과 출력 상승을 가져오나, 이와 동시에 압축기 탈설계점 작동문제를 야기 시킬 수 있다. 또한 NOx 발생량은 석탄가스 연소시 급격히 증가하며, NOx 제어를 위해 질소분사가 이루어져야 함을 알 수 있었다.

  • PDF

Dual-Fuel Combustion Phenomena of Pilot Distillate Injected to Pre-mixed Natural Gas in a Constant Volume Combustion Bomb (천연가스가 예혼합된 정적연소실에 파일럿오일을 분사한 복합연소현상)

  • Choi, I.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.112-122
    • /
    • 1995
  • As an alternative fuel producing less exhaust emissions, natural gas is of interest for use both in SI and CI engines. The potential of natural gas fuelled dual-fuel engine is considered high enough. However, much effort has to be made so that gaseous fuel is used efficiently with simultaneous minimum use of pilot oil. Hence, a simplified three-dimensional model, using a finite volume method in cylindrical coordinates, has been developed to facilitate an understanding of the dual-fuel combustion phenomena and to predict the complex interactions between the pilot distillate and natural gas. The computer model was calibrated by comparing it with the experimental results obtained from diesel engine like combustion bomb tests. In the pre-mixed natural gas combustion, the fuel burning was highly reliant on the injection condition and subsequent burning nature of the pilot distillate.

  • PDF

Effect of CNG Heating Value Variations on Emissions Characteristics in a Diesel-CNG Dual-Fuel Engine (CNG 발열량 변화가 Diesel-천연가스 혼소엔진 배기 특성에 미치는 영향)

  • Jang, Hyongjun;Yoon, Junkyu;Lee, Sunyoup;Kim, Yongrae;Kim, Junghwan;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.43-49
    • /
    • 2016
  • In this paper, purpose of study is emissions characteristics according to effects of heating value variations of CNG fuel in a dual-fuel engine fueled by diesel and natural gas. For heating value variation of CNG fuel, nitrogen gas was mixed with pure CNG fuel. So the higher heating value was changed from $10,400kcal/Nm^3$ to $9,400kcal/Nm^3$. Under one condition of CNG substitution rate was fixed at 80%, diesel fuel was injected at a fixed injection timing of 16 CAD BTDC and fuel pressure was also fixed at 110 MPa. The condition of tested engine was 1800 rpm and 500Nm. Emissions were sampled in exhaust pipe was located at downstream turbocharger. As a result, emissions characteristics were checked in heating value variations of CNG fuel with mixed nitrogen gas THC, $CH_4$ and CO emissions decreased and NOx and $CO_2$ increased.

Effects of CNG Heating Value on Combustion Characteristics of a Diesel-CNG Dual-Fuel Engine (디젤-CNG 혼소엔진에서 CNG 발열량 변화가 연소 특성에 미치는 영향)

  • Kim, Yongrae;Jang, Hyeongjun;Lee, Janghee;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.28-33
    • /
    • 2015
  • In this study, a dual fuel engine fueled with natural gas and diesel was tested to investigate the effects of heating value variation of CNG fuel. CNG substitution rate which is defined as the ratio of CNG and diesel supplied in a heating value basis was fixed at 80%. The higher heating value was varied from $10,400kcal/Nm^3$ to $9,400kcal/Nm^3$ by mixing nitrogen gas with pure CNG and diesel fuel was injected at a fixed injection timing. The engine test results showed that thermal efficiency and power output were decreased as the heating value of mixed CNG fuel was decreased. And the peak cylinder pressure was also decreased but the ignition delay time and the combustion duration and timing were almost same.

Experimental Investigation on the Enhancement of Gas Hydrate Formation for tile Solid Transportation of Natural Gas (천연가스 고체화 수송을 위한 가스 하이드레이트 생성촉진에 대한 실험적 연구)

  • Kim Nam-Jin
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.94-101
    • /
    • 2006
  • [ $1m^3$ ] solid hydrate contains up to $200m^3$ of natural gas, depending on pressure and temperature. Such large volume of natural gas hydrate can be utilized to store and transport large quantity of natural gas in a stable condition. So, in the present investigation, experiments carried out for the formation of natural gas hydrate governed by pressure, temperature, and gas compositions, etc.. The results show that the equilibrium pressure of structure II natural gas hydrate) is approximately 65% lower and the solubility is approximately three times higher than structure I methane hydrate). Also, the subcooling conditions of the structure I and II must be above 9K and 11K in order to form hydrate rapidly regardless of gas components, but the pressure increase is more advantageous than the temperature decrease in order to increase the gas consumption. And utilizing nozzles for spraying water in the form of droplets into the natural gas dramatically reduces the hydrate formation time and increases its solubility at the same time.

  • PDF

Experimental Investigation on the Enhancement of Gas Hydrate Formation for the Solid Transportation of Natural Gas (천연가스 고체화 수송을 위한 가스 하이드레이트 생성촉진에 대한 실험적 연구)

  • Kim, Nam-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.399-402
    • /
    • 2006
  • [ $1m^3$ ] solid hydrate contains up to $200m^3$ of natural gas, depending on pressure and temperature. Such large volume of natural gas hydrate can be utilized to store and transport large quantity of natural gas in a stable condition. So, in the present investigation, experiments carried out for the formation of natural gas hydrate governed by pressure, temperature, and gas compositions, etc.. The results show that the equilibrium pressure of structure II natural gas hydrate (is approximately 65% lower and the solubility is approximately three times higher than structure I methane hydrate). Also, the subcooling conditions of the structure I and II must be above 9K and 11K in order to form hydrate rapidly regardless of gas components, but the pressure increase is more advantageous than the temperature decrease in order to increase the gas consumption. And utilizing nozzles for spraying water in the form of droplets into the natural gas dramatically reduces the hydrate formation time and increases its solubility at the same time.

  • PDF