• Title/Summary/Keyword: 천연가스분사

Search Result 54, Processing Time 0.018 seconds

A Study on Expansion of Lean Limit for Heavy-Duty DI Engine with Compressed Natural Gas (대형 직접분사식 CNG기관의 희박한계 확장에 관한 연구)

  • Quoc, Tran Dang;Lee, Kwang-Ju;Lee, Jong-Tai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.735-740
    • /
    • 2011
  • 본 연구에서는 직접분사식 CNG기관의 희박한계를 보다 확장하여 고효율 및 저배기 공해를 실현시키고자 실린더 내에 고압의 천연가스를 직접분사함과 동시에 흡입과정 중 흡기관 내에 소량의 저압천연가스를 보조분사하는 경우의 희박한계 확장 및 제반특성에 대해 검토하였다. 그 결과, 흡기보조분사가 없을 경우 희박한계가 ${\lambda}$ = 1.4 까지였으나, 흡기보조분사율이 5~15% 정도에서는 희박한계가 ${\lambda}$ = 1.5 까지 확장되었다. 이는 흡기보조분사에 따른 혼합기의 혼합율 향상에 기인한 것으로 해석하였다. 연소기간은 줄어들었지만, 흡기보조분사의 효과는 주연소기간에서 조기연소기간보다 강하게 나타났다.

Dynamic Performance of Natural Gas Injection Valve for Heavy-Duty CNG Dual Fuel Engine (대형 CNG 혼소 엔진용 천연가스 분사밸브 동특성 연구)

  • Kim, Yong-Rae;Choi, Young
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.9-15
    • /
    • 2017
  • Natural gas fuel has known to be very promising in terms of abundancy and economic value. Therefore it is widely treated as research topics in a variety field of production, storage and utilization. Natural gas has become one of the major sources for the power generation by using internal combustion engines(ICE). Development of natural gas fuel injection device should be preceded to realize a reliable natural gas fuel supply system for a MW class power generation reciprocating ICE. In this research, an injection valve which consists of solenoid and body part with a moving plate was designed and its dynamic performance was experimented in the engine-like environment. Displacement length and diameter of an armature and diameter of a solenoid coil were tested at former study. In this research the effect of materials of solenoid core, size of main housing inlet and supply gas pressure are examined.

Dynamic Performance of Natural Gas Injection Valve for Heavy-Duty Power Generation Engine - Part I (발전용 대형엔진용 천연가스 분사밸브 동특성 연구 (I))

  • Choi, Young;Kim, Yong-Rae;Lee, Seok-Whan;Kim, Chang-Gi
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.15-21
    • /
    • 2015
  • Natural gas fuel has known to be very promising in terms of abundancy and economic value. Therefore it is widely treated as research topics in a variety field of production, storage and utilization. Natural gas has become one of the major sources for the power generation by using internal combustion engines(ICE). Development of natural gas fuel injection device should be preceded to realize a reliable natural gas fuel supply system for a MW class power generation reciprocating ICE. In this research, an injection valve which consists of solenoid and body part with a moving plate was designed and its dynamic performance was experimented in the engine-like environment. As a result of the experiments, linearity of flow rate was obtained and overall around 2ms of response time was observed at the pressure difference of 1bar. In addition, more than 100Liter/min(@2Hz) of gas flow rate was witnessed, which is expected to be adequate for the fuel supply system of a MW class natural gas engine.

Development of High Flow MPI Gas Injector for Heavy Duty Natural Gas Engine (대형 천연가스 엔진의 고유량 MPI 분사기 개발)

  • Lee, Seok-Hwan;Lee, Jin-Wook;Jee, Kang-Hoon;Choi, Min-Ho;Roh, Yun-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.28-33
    • /
    • 2009
  • Natural gas is the world's most plentiful combustible fuel, abundantly acailable in all continent. A fuel injector designed specifically for low energy density gaseous fuels has been developed. The injector incorporates design features that are necessary to optimize the performance for fuels such as CNG, LNG. Gaseous fuel injectors have a decisive influence upon starting performance, driveability, fuel consumption and exhaust emissions. A gaseous fuel injector has been developed to cope with the considerably larger volume flow rates and the developed gaseous fuel injector could be used at heavy duty natural gas engine. The static flow of injectors at various inlet pressure was directly proportional and the controllability showed great performance.

  • PDF

A Numerical Study on Performance of a Heavy-Duty Diesel engine for Power Generation under Natural Gas-Diesel Dual Fuel Operation (발전용 대형 디젤 엔진의 천연가스-디젤혼소 운전 특성에 대한 수치해석 연구)

  • Cho, Jungkeun;Park, Sangjun;Song, Soonho;Hur, Kwang-Beom
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.29-36
    • /
    • 2015
  • This study is an 1-D numerical study prior to modification of diesel engine for power plants to natural gas/diesel dual fuel engine using GT-Power with 1.5MW diesel engine for power generation. Natural gas injector was installed to intake manifold for dual fuel engine model. Effects on engine performance and characteristics were investigated when dual fuel is used in unmodified diesel engine. The analysis was done under 5 conditions from 0% to 40% of mixing rate on 720RPM engine speed. As a result of research, the engine performance was decreased as increasing ratio of natural gas. Engine brake power was decreased by 18.4% under 40% mixing rate condition. To clarify the reason, effects of injection timing and period were evaluated with DOE method. Considering this result, optimization was done for these parameters. Also, comparison between performances of dual fueled engine and diesel engine was made after optimizing the timing of injection by DOE method. As a result, engine brake power was decreased by 8.55% under mixing rate 40% condition showing 12.5% improvement.

DME도입 시장환경

  • Gang, Jeong-Uk
    • LP가스
    • /
    • s.105
    • /
    • pp.43-50
    • /
    • 2006
  • 연료로서의 DME 디메틸에테르(화학식 CH -O-CH ,DME)는 당초 가정용 캔 스프레이 등 분사 약제인 프레온의 대체 물질로 사용되기 시작했다. 그 후 양호한 압축 착화성이나 무연 연소하는 성질을 가지는 등 디젤 엔진의 연로로서 LP 가스와 동등한 증기압을 가져 LP가스의 대체연료로서 현재 전 세계에서 활발히 연구개발이 이뤄지고 있다. DME의 재료는 천연가스, 석탄, 바이오매스 등 다양한 자원에서 제조가 가능한데 이들로부터 합성가스(CO,H )를 추출.합성해 제조한다. 이것은 경제규모에 미달하는 부존자원의 유효한 이용이나 자원의 다양화에도 연결되기 때문에 차세대 연료로서 주목받고 있다. 천연가스로부터 저가로 대량 생산이 가능한 직적법이나 메탄올을 탈수해 제조하는 간접법 등 제조 기술도 확립되어 있다.

  • PDF

Simulation of Natural Gas Injected Dual-Fuel DI 2-Stroke Diesel Engine (천연가스를 파이럿오일과 이원공급하는 직접분사식 2행정 디이젤기관의 시뮬레이션)

  • Choi, In Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.9-18
    • /
    • 1995
  • The substitution of conventional fuel oil by alternative fuels is of immense interest due to liquid oil shortage and requirements of emission control standard. Among the alternative fuels, natural gas may be the most rational fuel, because of its widespread resource and clean est burning. Meanwhile, engine simulation is of great importance in engine development. Hence a zero-dimensional combustion model was developed for dual-fuel system. Natural gas was injected directly into the cylinder and small amount of distillate was used to provide the ignition kernel for natural gas burning. The intake air and exhaust gas flow was modeled by filling and emptying method. Although the single zone approach has an inherent limitation, the model showed promise as a predictive tool for engine performance. Its simulation was also made to see how the engine performance was influenced by the fuel injection timings and amount of each fuel.

  • PDF

Characteristics of Non-premixed Synthetic Natural Gas-Air Flame with Variation in Fuel Compositions (합성천연가스의 조성변화에 따른 확산화염 연소특성)

  • Oh, Jeongseog;Dong, Sangeun;Yang, Jebok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.829-836
    • /
    • 2013
  • The combustion characteristics with variations in synthetic natural gas (SNG) compositions were studied in a lab-scale combustor. The objective of the current study is to investigate the flame stabilization, flame structure, and spectrometry in a non-premixed SNG flame with varying fuel compositions. For the analysis of light emission in SNG flames, we used a spectrometer. As experimental conditions, the fuel jet velocity at the nozzle exit $u_F$ was varied from 5 to 40 m/s and the coaxial air velocity $u_A$ was varies from 0 to 0.43 m/s. The experiments showed that the flame stability increased with the hydrogen component in SNG.

Diagnosis of the Combustion Characteristics of Spark Ignition Engine with Compressed Natural Gas(CNG) Injection Type (압축천연가스(CNG) 분사식 스파크점화엔진의 연소특성 진단)

  • Ha, D.H.;Jin, J.M.;Hwang, S.I.;Yeom, J.K.;Chung, S.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.5-12
    • /
    • 2012
  • 희박예혼합기의 급속연소에 관한 연구를 위하여 2-실린더 가솔린 엔진을 부실 타입의 압축천연가스(CNG) 분사 엔진으로 개조하였다. 본 연구에서는 부실의 최적설계에 관심을 두고 두 종류의 부실을 적용하여 실험을 실시하였고, 부실의 체적과 홀 개수는 1.5cc와 6개로 각각 동일하게 하고, 홀 직경을 0.8mm 및 1.1mm로 달리하였다. CNG연료는 포트연료분사(Port fuel injection; PFI)와 부실분사(Sub-chamber injection; SCI)에 의해 엔진에 독립적으로 공급되고, 그 실험결과로 구한 연소압력, 평균유효압력(IMEP), 질량연소분율과 사이클변동계수(COV) 등을 서로 비교하였다. 본 연구의 대표적 실험연구결과로서 PFI 타입의 엔진연소특성은 희박예혼합기의 경우를 제외하고 모든 조건에 있어서 기존의 가솔린 엔진과 비슷하였고, SCI 타입의 엔진연소특성으로 평균유효압력은 부실 내에 불완전 예혼합기형성으로 PFI 타입보다 낮았으며, COV는 SCI 타입이 희박가연한계가 확대됨으로 인하여, 특히 높은 공기과잉률 범위에서 PFI 타입과 비교해 보다 좋은 결과를 나타내었다.