• Title/Summary/Keyword: 천리안 해색 위성

Search Result 16, Processing Time 0.017 seconds

Monitoring of Floating Green Algae Using Ocean Color Satellite Remote Sensing (해색위성 원격탐사를 이용한 부유성 녹조 모니터링)

  • Lee, Kwon-Ho;Lee, So-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.137-147
    • /
    • 2012
  • Recently, floating green algae (FGA) in open oceans and coastal waters have been reported over wide area, yet accurate detection of these using traditional ground based measurement and chemical analysis in the laboratory has been difficult or even impossible due to the lack of spatial resolution, coverage, and revisit frequency. In contrast, spectral reflectance measurement makes it possible to quickly assess the chlorophyll content in green algae. Our objectives are to investigate the spectral reflectance of the FGA observed in the Yellow Sea and to develop a new index to detect FGA from satellite imagery, namely floating green algae index (FGAI), which uses relatively simple reflectance ratio technique. The Moderate Resolution Imaging Spectroradiometer (MODIS) and Geostationary Ocean Color Imager (GOCI) satellite images at 500m spatial resolution were utilized to produce FGAI which is defined as the ratio between reflectance at 860nm and 660nm bands. Both FGAI results yielded reasonable green algae detection at the regional scale distribution. Especially houly GOCI observations can present more detaield information of FGAI than low-orbit satellite.

Sea Fog Detection Algorithm Using Visible and Near Infrared Bands (가시 밴드와 근적외 밴드를 이용한 해무 탐지 알고리즘)

  • Lee, Kyung-Hun;Kwon, Byung-Hyuk;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.669-676
    • /
    • 2018
  • The Geostationary Ocean Color Imager(: GOCI) detects the sea fog at a high horizontal resolution of $500m{\times}500m$ using the Rayleigh corrected reflectance of 8 bands. The visible and the near infrared waves strongly reflect the characteristics of the earth surface, causing errors in cloud and fog detection. A threshold of the Band7 reflectance was set to detect the sea fog entering the land. When the region on which Band4 reflectance is larger than Band8 is determinated as cloud, the error over-estimated as sea fog is corrected by comparing the average reflectance with the surrounding region. The improved algorithm has been verified by comparing the fog images of the Cheollian satellite (COMS: Communication, Ocean, and Meteorological Satellite) as well as the visibility data from the Korea Meteorological Administration.

Monitoring Red Tide in South Sea of Korea (SSK) Using the Geostationary Ocean Color Imager (GOCI) (천리안 해색위성 GOCI를 이용한 대한민국 남해안 적조 모니터링)

  • Son, Young Baek;Kang, Yoon Hyang;Ryu, Joo Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.531-548
    • /
    • 2012
  • To identify Cochlodinium polykrikoides red tide from non-red tide water (satellite high chlorophyll waters) in the South Sea of Korea (SSK), we improved a spectral classification method proposed by Son et al.(2011) for the world first Geostationary Ocean Color Imager (GOCI). C. polykrikoides blooms and non-red tide waters were classified based on four different criteria. The first step revealed that the radiance peaks of potential red tide water occurred at 555 and 680 nm (fluorescence peak). The second step separated optically different waters that were influenced by relatively low and high contributions of colored dissolved organic matter (CDOM) (including detritus) to chlorophyll. The third and fourth steps discriminated red tide water from non-red tide water based on the blue-to-green ratio, respectively. After applying the red tide classification, the spectral response of C. polykrikoides red tide water, which is influenced by pigment concentration as well as CDOM (detritus), showed different slopes for the blue and green bands (lower slope at blue bands and higher slope at green bands). The opposite result was found for non-red tide water. This modified spectral classification method for GOCI led to increase user accuracy for C. polykrikoides and non-red tide blooms and provided a more reliable and robust identification of red tides over a wide range of oceanic environments than was possible using chlorophyll a concentration, or proposed red tide detection algorithms. Maps of C. polykrikoides red tide in SSK outlined patches of red tide covering the area near Naro-do and Tongyeong during the end of July and early of August, 2012 and extending into from Wan-do and Geoje-do during the middle of August, 2012.

Introduction of GOCI-II Atmospheric Correction Algorithm and Its Initial Validations (GOCI-II 대기보정 알고리즘의 소개 및 초기단계 검증 결과)

  • Ahn, Jae-Hyun;Kim, Kwang-Seok;Lee, Eun-Kyung;Bae, Su-Jung;Lee, Kyeong-Sang;Moon, Jeong-Eon;Han, Tai-Hyun;Park, Young-Je
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1259-1268
    • /
    • 2021
  • The 2nd Geostationary Ocean Color Imager (GOCI-II) is the successor to the Geostationary Ocean Color Imager (GOCI), which employs one near-ultraviolet wavelength (380 nm) and eight visible wavelengths(412, 443, 490, 510, 555, 620, 660, 680 nm) and three near-infrared wavelengths(709, 745, 865 nm) to observe the marine environment in Northeast Asia, including the Korean Peninsula. However, the multispectral radiance image observed at satellite altitude includes both the water-leaving radiance and the atmospheric path radiance. Therefore, the atmospheric correction process to estimate the water-leaving radiance without the path radiance is essential for analyzing the ocean environment. This manuscript describes the GOCI-II standard atmospheric correction algorithm and its initial phase validation. The GOCI-II atmospheric correction method is theoretically based on the previous GOCI atmospheric correction, then partially improved for turbid water with the GOCI-II's two additional bands, i.e., 620 and 709 nm. The match-up showed an acceptable result, with the mean absolute percentage errors are fall within 5% in blue bands. It is supposed that part of the deviation over case-II waters arose from a lack of near-infrared vicarious calibration. We expect the GOCI-II atmospheric correction algorithm to be improved and updated regularly to the GOCI-II data processing system through continuous calibration and validation activities.

GOCI-II Based Low Sea Surface Salinity and Hourly Variation by Typhoon Hinnamnor (GOCI-II 기반 저염분수 산출과 태풍 힌남노에 의한 시간별 염분 변화)

  • So-Hyun Kim;Dae-Won Kim;Young-Heon Jo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2023
  • The physical properties of the ocean interior are determined by temperature and salinity. To observe them, we rely on satellite observations for broad regions of oceans. However, the satellite for salinity measurement, Soil Moisture Active Passive (SMAP), has low temporal and spatial resolutions; thus, more is needed to resolve the fast-changing coastal environment. To overcome these limitations, the algorithm to use the Geostationary Ocean Color Imager-II (GOCI-II) of the Geo-Kompsat-2B (GK-2B) was developed as the inputs for a Multi-layer Perceptron Neural Network (MPNN). The result shows that coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (RRMSE) between GOCI-II based sea surface salinity (SSS) (GOCI-II SSS) and SMAP was 0.94, 0.58 psu, and 1.87%, respectively. Furthermore, the spatial variation of GOCI-II SSS was also very uniform, with over 0.8 of R2 and less than 1 psu of RMSE. In addition, GOCI-II SSS was also compared with SSS of Ieodo Ocean Research Station (I-ORS), suggesting that the result was slightly low, which was further analyzed for the following reasons. We further illustrated the valuable information of high spatial and temporal variation of GOCI-II SSS to analyze SSS variation by the 11th typhoon, Hinnamnor, in 2022. We used the mean and standard deviation (STD) of one day of GOCI-II SSS, revealing the high spatial and temporal changes. Thus, this study will shed light on the research for monitoring the highly changing marine environment.

Validation of GOCI-II Products in an Inner Bay through Synchronous Usage of UAV and Ship-based Measurements (드론과 선박을 동시 활용한 내만에서의 GOCI-II 산출물 검증)

  • Baek, Seungil;Koh, Sooyoon;Lim, Taehong;Jeon, Gi-Seong;Do, Youngju;Jeong, Yujin;Park, Sohyeon;Lee, Yongtak;Kim, Wonkook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.609-625
    • /
    • 2022
  • Validation of satellite data products is critical for subsequent analysis that is based on the data. Particularly, performance of ocean color products in turbid and shallow near-land ocean areas has been questioned for long time for its difficulty that stems from the complex optical environment with varying distribution of water constituents. Furthermore, validation with ship-based or station-based measurements has also exhibited clear limitation in its spatial scale that is not compatible with that of satellite data. This study firstly performed validation of major GOCI-II products such as remote sensing reflectance, chlorophyll-a concentration, suspended particulate matter, and colored dissolved organic matter, using the in-situ measurements collected from ship-based field campaign. Secondly, this study also presents preliminary analysis on the use of drone images for product validation. Multispectral images were acquired from a MicaSense RedEdge camera onboard a UAV to compensate for the significant scale difference between the ship-based measurements and the satellite data. Variation of water radiance in terms of camera altitude was analyzed for future application of drone images for validation. Validation conducted with a limited number of samples showed that GOCI-II remote sensing reflectance at 555 nm is overestimated more than 30%, and chlorophyll-a and colored dissolved organic matter products exhibited little correlation with in-situ measurements. Suspended particulate matter showed moderate correlation with in-situ measurements (R2~0.6), with approximately 20% uncertainty.