• Title/Summary/Keyword: 처분시스템

Search Result 310, Processing Time 0.023 seconds

Status of the International Cooperation Project, DECOVALEX for THM Coupling Analysis (THM 복합거동 해석을 위한 DECOVALEX 국제공동연구 현황)

  • Kwon, Sang-Ki;Cho, Won-Jin;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.323-338
    • /
    • 2007
  • For the assessment of the performance and safety of a deep underground radioactive repository system, the thermal, hydraulic, mechanical, and chemical behaviors and their coupling should be studied. In order to analyze the THMC coupling behavior more effectively, which requires complex mathematical models and modelling techniques, DECOVALEX international cooperation project was launched in 1992. Since its beginning, four major stages of the project were successfully completed and THMC modelling techniques for various conditions could be developed. In this study, the current status and major achievements from the project were reviewed and possible benefits of the participation to the project were discussed.

  • PDF

Experiments for Efficiency of a Wireless Communication in a Buffer Material and Conceptual Design of THM Integrated Sensor System (완충재 내 무선 통신 효율 실험 및 THM 통합 센서 시스템 개념 설계)

  • Chang-Ho Hong;Jiwook Choi;Jin-Seop Kim;Sinhang Kang
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.267-282
    • /
    • 2024
  • This study aims to develop a wireless communication system for long-term monitoring of high-level radioactive waste disposal facilities. Conventional wired sensors can lead to a deterioration in buffer quality and management difficulties due to the use of cables for power supply and data transmission. This study proposes the adoption of a wireless communication system and compares the received signal strengths within bentonite using modules such as WiFi, ZigBee, and LoRa. Increases in dry density of bentonite and distance between transceivers led to reduced received signal strength. Additionally, using the low-frequency band exhibited less signal attenuation. Based on these findings, a conceptual design for a wireless network-based THM integrated sensor system was proposed. Results of this study can be used as foundational data for long-term monitoring of disposal facility.

Effect of Confining Pressure, Temperature, and Porosity on Permeability of Daejeon Granite: Experimental Study (대전 화강암의 투수계수에 미치는 구속압, 온도, 공극률의 영향: 실험적 연구)

  • Donggil Lee;Seokwon Jeon
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.71-87
    • /
    • 2024
  • In deep geological disposal of high-level radioactive waste, the surrounding rock at the immediate vicinity of the deposition hole may experience localized changes in permeability due to in-situ stress at depth, swelling pressure from resaturated bentonite buffer, and the heat generated from the decay of radioactive isotopes. In this study, experimental data on changes in permeability of granite, a promising candidate rock type in South Korea, were obtained by applying various confining pressures and temperature conditions expected in the actual disposal environment. By conducting the permeability test on KURT granite specimens under three or more hydrostatic pressure conditions, the relation in which the permeability decreases exponentially as the confining pressure increases was derived. The temperature-induced changes in permeability were found to be negligible at temperatures below the expected maximum of 90℃. In addition, by establishing a relation in which the initial permeability is proportional to the power of the initial porosity, it was possible to estimate permeability value for granite with a specific porosity under a certain confining pressure.

Standard Procedures and Field Application Case of Constant Pressure Injection Test for Evaluating Hydrogeological Characteristics in Deep Fractured Rock Aquifer (고심도 균열암반대수층 수리지질특성 평가를 위한 정압주입시험 조사절차 및 현장적용사례 연구)

  • Hangbok Lee;Chan Park;Eui-Seob Park;Yong-Bok Jung;Dae-Sung Cheon;SeongHo Bae;Hyung-Mok Kim;Ki Seog Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.348-372
    • /
    • 2023
  • In relation to the high-level radioactive waste disposal project in deep fractured rock aquifer environments, it is essential to evaluate hydrogeological characteristics for evaluating the suitability of the site and operational stability. Such subsurface hydrogeological data is obtained through in-situ tests using boreholes excavated at the target site. The accuracy and reliability of the investigation results are directly related to the selection of appropriate test methods, the performance of the investigation system, standardization of the investigation procedure. In this report, we introduce the detailed procedures for the representative test method, the constant pressure injection test (CPIT), which is used to determine the key hydrogeological parameters of the subsurface fractured rock aquifer, namely hydraulic conductivity and storativity. This report further refines the standard test method suggested by the KSRM in 2022 and includes practical field application case conducted in volcanic rock aquifers where this investigation procedure has been applied.

Evaluation of Water Suction for the Compacted Bentonite Buffer Considering Temperature Variation (온도 변화를 고려한 압축 벤토나이트 완충재의 수분흡입력 평가)

  • Yoon, Seok;Go, Gyu-Hyun;Lee, Jae-Owan;Kim, Geon-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.7-14
    • /
    • 2019
  • The compacted bentonite buffer is one of the major components of an engineered barrier system (EBS) for the disposal of high-level radioactive waste (HLW), and it is considered the best candidate for the buffer material. The buffer is located between disposal canisters and near-field rock mass, and it interrupts the release of radionuclide from disposal canisters and protect them from the penetration of groundwater. At initial disposal condition, degree of saturation of the compacted bentonite buffer decreases because of high thermal quantities released from the disposal canisters. However, the degree of saturation of the compacted bentonite buffer gradually increases caused by inflow of groundwater. The saturated and unsaturated behavior of the buffer is a very important input data since it can determine the safety performance of EBS. Therefore, this paper investigated water retention capacity (WRC) for the Korean compacted bentonite buffer. The WRC of the compacted bentonite buffer was derived by measuring volumetric water content and water suction when temperature variation was between 24℃~125℃ considering decrease of degree of saturation with respect to temperature increase. The WRC was also derived with the same volumetric water content under the room temperature condition, and it showed 1~15% larger water suction than high temperature condition.

Analysis on Design Change for Backfilling Solution of the Disposal Tunnel in the Deep Geological Repository for High-Level Radioactive Waste in Finland (핀란드 고준위방사성폐기물 심층처분시설 처분터널 뒤채움 설계 변경을 위한 연구사례 분석)

  • Heekwon Ku;Sukhoon Kim;Jeong-Hwan Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.435-444
    • /
    • 2023
  • In the licensing application for the deep geological disposal system of high-level radioactive waste in Finland, the disposal tunnel backfilling has been changed from the block/pellet (for the construction) to the granular type (for the operation). Accordingly, for establishing the design concept for backfilling, it is necessary to examine applicability to the domestic facility through analyzing problems of the existing method and improvements in the alternative design. In this paper, we first reviewed the principal studies conducted for changing the backfill method in the licensing process of the Finnish facility, and identified the expected problems in applying the block/pellet backfill method. In addition, we derived the evaluation factors to be considered in terms of technical and operational aspects for the backfilling solution, and then conducted a comparative analysis for two types of backfill methods. This analysis confirmed the overall superiority of the design change. It is expected that these results could be utilized as the technical basis for deriving the optimum design plan in development process of the Korean-specific deep disposal facility. However, applicability should be reviewed in advance based on the latest technical data for the detailed evaluation factors that must be considered for selecting the backfilling method.

Assessment on the Monitoring System for KURT using Optical Fiber Sensor Cable (광섬유센서케이블을 이용한 지하처분연구시설의 감시시스템 운영 평가)

  • Kim, Kyung-Su;Bae, Dae-Seok;Koh, Yong-Kwon;Kim, Jung-Yul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.293-301
    • /
    • 2010
  • Optical fiber cable, as a sensor, was installed on the wall of KAERI(Korea Atomic Energy Research Institute) Underground Research Tunnel(KURT) in order to monitor the physical stability of the tunnel, which was constructed for technical development and demonstration of radioactive waste disposal. This monitoring system has two simultaneous measurements of temperature and strain over time using Brillouin backscatter. According to the results of the monitoring from Jan. 2008 to Nov. 2009, there is no significant displacement or movement at the tunnel wall However, the cumulative volume of total strain increased slightly as time passes with the comparison of the reference observation, which was measured in Jan. 2008. The change in cumulative volume of total strain indicates that the strain level had been affected by saturation and de-saturation phenomena due to groundwater fluctuation at several points at KURT. This system is based on the distributed sensing technique concept, not point sensing. By using this system, a displacement can be detected with the range from $20{\mu}{\varepsilon}$ to $28,000{\mu}{\varepsilon}$ every 1m interval in minimum. A temperature variation can be monitored at every 0.5m interval with the resolution of 0.01 in minimum. Based on the study, this monitoring system is potentially applicable to long term monitoring systems for radioactive waste disposal project as well as other structures and underground openings.

Strategy of the GIS establishment for Site and Environmental Data Management for Radioactive Waste Repository (방사성폐기물처분장 부지$\cdot$환경종합관리를 위한 지리정보 시스템 구축 방안)

  • 임용수;박세문;김창락
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.549-555
    • /
    • 2003
  • For the safe management of radwaste repository, data of the site and environment have to be collected and managed systematically. Particularly, for the radwaste repository, which has to be institutionally controlled for a long period after closure, data will be collected and maintained through the monitoring programme. To meet this requirement, a new programme called "Site Information and Total Environmental data management System (SITES)" is being developed. In this study, as the first stage of GIS(Geographic Information System) development that will be embedded in SITES, the scope and function of GIS are issued. Methodology for the Selection and management of thematic maps is studied as well.d as well.

  • PDF