• Title/Summary/Keyword: 처분성

Search Result 1,346, Processing Time 0.029 seconds

방사성폐기물처분장 주변 균열 암반에서의 핵종이동 모델의 검토 및 평가방법론

  • 이연명;강철형;한필수;박헌휘
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.578-599
    • /
    • 1994
  • 방사성 폐기물 처분장의 건설에 가장 중요한 부분중의 하나는 처분안전성의 확보일 것이다. 처분장 안전성평가는 처분장이 입지하는 환경에 대한 실험실적 자료 또는 현장 자료의 충분한 데이타베이스와 처분시스템에서 일어날 수 있는 주요한 프로세스를 기술하는 수학적 모델을 통하여 이루어지게 된다. 처분시스템의 기본적인 기능은 처분된 폐기물고화체를 인간환경으로 부터 완벽하게 고립시켜 처분장내에 영구적으로 격리시키는 것이다. 그렇지만 정상적이든 비정상적이든 핵종은 항상 유출될 가능성이 있고 설사 이러한 경우라도 충분히 안전한 것을 입증하는 것이 처분장 성능 평가와 안전성평가의 주요한 목적이 된다. 한편 장기간에 걸친 처분 안전성 평가는 전산 프로그램을 통한 이론적 예측에 의해서만 가능하므로, 처분안전성 평가도구의 개발 및 확보의 중요성은 매우 크다고 할 수 있다. 이 연구에서는 처분장이 입지하는 암반 매질에서의 핵종의 이동을 기술할 수 있는 여러 모델을 검토하고, 특정 처분부지에 대한 종합적 안전성 평가를 수행할 수 있는 방법론을 제시할 목적으로 임의의 1개 부지의 지형도및 추정가능한 지질관련 자료를 이용하여 해당 부지에 대한 가상의 핵종 유출 시나리오를 설정하여 부지특성적인 예비 종합 안전성 평가를 수행하여 보았다.

  • PDF

Borehole Disposal Concept: A Proposed Option for Disposal of Spent Sealed Radioactive Sources in Tanzania (보어홀 처분 개념: 탄자니아의 폐밀봉선원 처분을 위한 제안)

  • Salehe, Mikidadi;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.293-301
    • /
    • 2013
  • Borehole Disposal Concept (BDC) was initiated by the South African Nuclear Energy Corporation (NECSA) with the view to improve the radioactive waste management practices in Africa. At a time when geological disposal of radioactive waste is being considered, the need to protect ground water from possible radioactive contamination and the investigation of radionuclides migration through soil and rocks of zone of aeration into ground water has becomes very imperative. This is why the Borehole Disposal Concept (BDC) is being suggested to address the problem. The concept involves the conditioning and emplacement of disused sealed radioactive sources in an engineered facility of a relatively narrow diameter borehole (260 mm). Tanzania is operating a Radioactive Waste Management Facility where a number of spent sealed radioactive sources with long and short half lives are stored. The activity of spent sealed radioactive sources range from (1E-6 to 8.8E+3 Ci). However, the long term disposal solution is still a problem. This study therefore proposing the country to adopt the BDC, since the repository requires limited land area and has a low probability of human intrusion due to the small footprint of the borehole.

Determination of Radionuclide Concentration Limit for Low and Intermediate-Level Radioactive Waste Disposal Facility II: Application of Optimization Methodology for Underground Silo Type Disposal Facility (중저준위방사성폐기물 처분시설의 처분농도제한치 설정에 대한 고찰 II: 최적화 방법론 개발 및 적용)

  • Hong, Sung-Wook;Kim, Min Seong;Jung, Kang Il;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.265-279
    • /
    • 2017
  • The Gyeongju underground silo type disposal facility, approved for use in December 2014, is in operation for the disposal of low and very low-level radioactive wastes, excluding intermediate-level waste. That is why the existing low-level radioactive waste level has been subdivided and the concentration limit value for intermediate-level waste has been changed in accordance with Nuclear Safety Commission Notice 2014-003. For the safe disposal of intermediate-level wastes, new optimization methodology for calculating the concentration limit of intermediate radioactive level wastes at an underground silo type disposal facility was developed. According to the developed optimization methodology, concentration limits of intermediate-level wastes were derived and the inventory of radioactive nuclides was evaluated. The operation and post closure scenarios were evaluated for the derived radioactive nuclide inventory and the results of all scenarios were confirmed to meet the regulatory limit. However, in case of $^{14}C$, it was confirmed that additional radioactivity limitation through a well scenario was needed in addition to the limit of disposal concentration. It was confirmed that the derived intermediate concentration limit of radioactive waste can be used as the intermediate-level waste concentration limit for the underground disposal facility. For the safe disposal of intermediate-level wastes, KORAD plans to acquire additional data from the radioactive waste generator and manage the cumulative radioactivity of $^{14}C$.

Determination of Radionuclide Concentration Limit for Low and Intermediate-level Radioactive Waste Disposal Facility I : Application of IAEA Methodology for Underground Silo Type Disposal Facility (중저준위 방사성폐기물 처분시설의 처분농도제한치 설정에 대한 고찰 I : IAEA 방법론의 동굴처분시설 적용)

  • Hong, Sung-Wook;Kim, Min Seong;Jung, Kang Il;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.257-264
    • /
    • 2017
  • For the safe disposal of intermediate level radioactive waste according to the Nuclear Safety and Security Commission's notice and KORAD's management plan for low and intermediate level radioactive waste, the disposal concentration limit was derived based on the IAEA methodology. The evaluation of the derived disposal concentration limit revealed that it is not suitable as a practical limit for intermediate level radioactive waste. This is because the disposal concentration limit according to the IAEA methodology is derived using a single value of radioactive waste density and the disposal facility's volume. The IAEA methodology is suitable for setting the concentration limit for vault type disposal, which consists of a single type of waste, whereas an underground silo type disposal facility is composed of several types of radioactive waste, and thus the IAEA methodology has limitations in determining the disposal concentration limit. It is necessary to develop and apply an improved method to derive the disposal concentration limit for intermediate level radioactive waste by considering the radioactivity of various types of radioactive waste, the corresponding scenario evaluation results, and the regulatory limit.

Concept design and site characterization for the Underground Disposal Research Tunnel at KAERI site (원자력연구소내 지하 처분연구 시설 건설을 위한 지반조사 및 개념설계)

  • 권상기;박정화;조원진
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.175-187
    • /
    • 2004
  • 고준위방사성폐기물 처분의 경우 심부 암반에 만들어진 처분장에 영구 처분하는 것이 최선의 방안으로 여겨지고 있다. 하지만 지하 심부의 암반에 대한 물리적, 화학적, 역학적, 열적, 수리적 물성과 이들과 핵종 이동의 관계, 처분환경에서의 공학적 방벽 및 암반의 거동이 처분장 안정성 및 안전성에 미치는 영향 등을 파악해야하는 어려움이 따른다. 특히 고준위폐기물 처분의 경우 장기간의 안전성을 고려해야하기 때문에 자연방벽과 공학적 방벽의 시간에 따른 거동변화도 고려하여야 할 필요가 있다. (중략)

Ventilation System Strategy for a Prospective Korean Radioactive Waste Repository (한국형 방사성 폐기물 처분장을 위한 환기시스뎀 전략)

  • Kim Jin;Kwon Sang-Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.2
    • /
    • pp.135-148
    • /
    • 2005
  • In the stage of conceptual design for the construction and operation of the geologic repository for radioactive wastes, it is important to consider a repository ventilation system which serves the repository working environment, hygiene & safety of the public at large, and will allow safe maintenance like moisture content elimination in repository for the duration of the repositories life, construction/operation/closure, also allowing safe waste transportation and emplacement. This paper describes the possible ventilation system design criteria and requirements for the prospective Korean radioactive waste repositories with emphasis on the underground rock cavity disposal method in the both cases of low & medium-level and high-level wastes. It was found that the most important concept is separate ventilation systems for the construction (development) and waste emplacement (storage) activities. In addition, ventilation network system modeling, natural ventilation, ventilation monitoring systems & real time ventilation simulation, and fire simulation & emergency system in the repository are briefly discussed.

  • PDF

The Study for Reducing the Borrowing Cost for LILW Disposal (중·저준위방사성폐기물처분사업에서 금융비용 감소를 위한 연구)

  • Kim, Beomin;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.89-96
    • /
    • 2014
  • The repository for the disposal of LILW which is generated from nuclear power plants and industries is expected to be completed in 2014. For the disposal of LILW, it is important to secure a disposal facility itself, but it is also very important to establish a reasonable charging system which all shareholders are satisfied with. Korea's disposal fee for LILW is higher than other countries' fee, which is a burden to waste generators as well as the waste management organization. The partial reason for the high disposal fee is put on the high social and construction cost when compared with other countries. However the major reason is put on the excessive borrowing cost that is used for the construction of the LILW disposal facility. In this study, we proposed the way to reduce the excessive borrowing cost for sustainable project managements of LILW disposal by analyzing a cost structure.

Analysis of the Disposal Tunnel Spacing and Disposal Pit Pitch for the HLW Repository Design (심지층 처분시설 설계를 위한 처분터널 및 처분공 간격 분석)

  • Lee, Jong-Youl;Kim, Seong-Ki;Kim, Jhin-Wung;Choi, Jong-Won;Hahn, Pil-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.349-358
    • /
    • 2005
  • In this study, analysis of the disposal tunnel spacing and disposal pit pitch was carried out, as a factor of the design to estimate the scale and layout of the repository. To do this, based on the reference repository concept and the engineered barrier concept, several cross sections of the disposal tunnel and disposal pit were established. After then, the mechanical and thermal stabilities of the established tunnels were analyzed. Also, an optimized disposal tunnel spacing and the disposal pit pitch reducing the excavation volume was proposed. The results of these analyses can be used in the deep geological repository design. The detailed analyses by the exact site characteristics data to reduce the uncertainty of the site and the modification for the optimization are required.

  • PDF

Prediction of Radionuclide Inventory for Low- and Intermediate-Level Radioactive Waste by Considering Concentration Limit of Waste Package (처분방사능량제한치를 고려한 중저준위 방사성폐기물 처분시설의 핵종재고량 산정(안))

  • Jung, Kang Il;Kim, Min Seong;Jeong, Noh Gyeom;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.65-82
    • /
    • 2017
  • The result of a preliminary safety assessment that was completed by applying the radionuclide inventory calculated on the basis of available data from radioactive waste generation agencies suggested that many difficulties are to be expected with regard to disposal safety and operation. Based on the results of the preliminary safety assessment of the entire disposal system, in this paper, a unit package exceeding the safety goal is selected that occupies a large proportion of radionuclides in intermediate-level radioactive waste. We introduce restrictions on the amount of radioactivity in a way that excludes the high surface dose rate of the package. The radioactivity limit for disposal will be used as the baseline data for establishing the acceptance criteria and the disposal criteria for each disposal facility to meet the safety standards. It is necessary to draw up a comprehensive safety development plan for the Gyeongju waste disposal facility that will contribute to the construction of a Safety Case for the safety optimization of radioactive waste disposal facilities.

Analysis of the Disposal Tunnel Spacing and Disposal Pit Pitch for the HLW Repository Design (심지층 처분시설 설계를 위한 처분터널 및 처분공 간격 분석)

  • 이종열;김성기;김진웅;최종원;한필수
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.315-321
    • /
    • 2003
  • In this study, analysis of the disposal tunnel spacing and disposal pit pitch was carried out, as a factor of the design to estimate the scale and layout of the repository To do this, based on the reference repository concept and the engineered barrier concept, the cross section of the disposal tunnel and disposal pit are established and the mechanical and thermal stabilities of the tunnels are analyzed. Also, the optimized disposal tunnel spacing and the disposal pit pitch which minimize the excavation volume was proposed. The detailed analyses by the exact site characteristics data are needed to reduce the uncertainty of the site in the future.

  • PDF