• Title/Summary/Keyword: 처분공

Search Result 356, Processing Time 0.031 seconds

Hydrogeological properties around the KURT (KURT 주변지역의 수리지질특성 연구)

  • Lee, Jin-Yong;Kim, Kyung-Su;Park, Kyung-Woo;Han, Woon-Woo
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.121-126
    • /
    • 2010
  • Current technology for radioactive waste disposal facility is operated as part of KURT site characterization in terms of reliability assessment is conducted to expand. In this study, a geological model of KURT surrounding area on the basis of flow characteristics of the site-scale hydrogeological study was about. Distributed in the study area into four boreholes were plotted using the stereo net NS, NW, EW, Low-angle fracture group was able to identify the components of geological models and include top soil layer, belt of weathering, Low-angle fracture zone, fracture zone was divided into. Separated by fracture of the hydraulic test of through the groundwater aquifer that provides the flow hydraulic conductivity and insulation hydraulic affecting the slope of the normal distribution for the size and direction by performing statistical analysis of fracture in the direction of local ns The advantage was confirmed. In addition, Low-angle fracture hydraulic conductivity of the value of 3.61e-07 m/s has a value greater than the major fracture, the fracture zones exist in the base rock and base rock and the hydraulic characteristics of the different methods applied and had to have a different interpretation judged by was.

Fundamental Properties and Radioactivity Shielding Characteristics of Mortar Specimen Utilizing CRT Waste Glass as Fine Aggregate (폐 브라운관(CRT) 유리를 잔골재로 대체한 모르타르 시험체의 기초 물성 및 방사선 차폐 특성)

  • Choi, Yoon-Suk;Kim, Il-Sun;Choi, So-Yeong;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.163-170
    • /
    • 2019
  • In recent years, various types of industrial wastes are rapidly increasing with the development of high-tech industries. Specially, high-density waste glass of CRT TV containing heavy metals are buried or disposed of due to reprocessing costs and environmental pollution problems. Thus, more basic research is needed to recycle waste such as CRT waste glass such. In this study, the fundamental properties and radiation shielding performance of mortar specimens substituted CRT waste glass as a fine aggregate were analyzed and their application to shielding materials was evaluated. According to the results, the bulk density of mortar specimen replaced with CRT waste glass was increased and the compressive strength and flexural strength were decreased. Meanwhile, the CRT waste glass substitute specimen containing a large amount of lead component showed a higher shielding performance than the general mortar specimen. Especially, the linear attenuation coefficient of CRT waste glass in $122KeV{\cdot}^{57}Co$ of the low energy field was 2.5 times higher than that of normal specimen.

Sequential Use of COMSOL Multiphysics® and PyLith for Poroelastic Modeling of Fluid Injection and Induced Earthquakes (COMSOL Multiphysics®와 PyLith의 순차 적용을 통한 지중 유체 주입과 유발지진 공탄성 수치 모사 기법 연구)

  • Jang, Chan-Hee;Kim, Hyun Na;So, Byung-Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.643-659
    • /
    • 2022
  • Geologic sequestration technologies such as CCS (carbon capture and storage), EGS (enhanced geothermal systems), and EOR (enhanced oil recovery) have been widely implemented in recent years, prompting evaluation of the mechanical stability of storage sites. As fluid injection can stimulate mechanical instability in storage layers by perturbing the stress state and pore pressure, poroelastic models considering various injection scenarios are required. In this study, we calculate the pore pressure, stress distribution, and vertical displacement along a surface using commercial finite element software (COMSOL); fault slips are subsequently simulated using PyLith, an open-source finite element software. The displacement fields, are obtained from PyLith is transferred back to COMSOL to determine changes in coseismic stresses and surface displacements. Our sequential use of COMSOL-PyLith-COMSOL for poroelastic modeling of fluid-injection and induced-earthquakes reveals large variations of pore pressure, vertical displacement, and Coulomb failure stress change during injection periods. On the other hand, the residual stress diffuses into the remote field after injection stops. This flow pattern suggests the necessity of numerical modeling and long-term monitoring, even after injection has stopped. We found that the time at which the Coulomb failure stress reaches the critical point greatly varies with the hydraulic and poroelastic properties (e.g., permeability and Biot-Willis coefficient) of the fault and injection layer. We suggest that an understanding of the detailed physical properties of the surrounding layer is important in selecting the injection site. Our numerical results showing the surface displacement and deviatoric stress distribution with different amounts of fault slip highlight the need to test more variable fault slip scenarios.

A Fundamental Study on Laboratory Experiments in Rock Mechanics for Characterizing K-COIN Test Site (K-COIN 시험부지 특성화를 위한 암석역학 실내실험 기초 연구)

  • Seungbeom Choi;Taehyun Kim;Saeha Kwon;Jin-Seop Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.109-125
    • /
    • 2023
  • Disposal repository for high-level radioactive waste secures its safety by means of engineered and natural barriers. The performance of these barriers should be tested and verified through various aspects in terms of short and/or long-term. KAERI has been conducting various in-situ demonstrations in KURT (KAERI Underground Research Tunnel). After completing previous experiment, a conceptual design of an improved in-situ experiment, i.e. K-COIN (KURT experiment of THMC COupled and INteraction), was established and detailed planning for the experiment is underway. Preliminary characterizations were conducted in KURT for siting a K-COIN test site. 15 boreholes with a depth of about 20 m were drilled in three research galleries in KURT and intact rock specimens were prepared for laboratory tests. Using the specimens, physical measurements, uniaxial compression, indirect tension, and triaxial compression tests were conducted. As a result, specific gravity, porosity, elastic wave velocities, uniaxial compressive strength, Young's modulus, Poisson's ratio, Brazilian tensile strength, cohesion, and internal friction angle were estimated. Statistical analyses revealed that there did not exist meaningful differences in intact rock properties according to the drilled sites and the depth. Judging from the uniaxial compressive strength, which is one of the most important properties, all the specimens were classified as very strong rock so that mechanical safety was secured in all the regions.

Feasibility Assessment on the Application of X-ray Computed Tomography on the Characterization of Bentonite under Hydration (벤토나이트 수화반응 특성화를 위한 X선 단층촬영 기술 적용성 평가)

  • Melvin B., Diaz;Gyung Won, Lee;Seohyeon, Yun;Kwang Yeom, Kim;Chang-soo, Lee;Minseop, Kim;Jin-Seop, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.491-501
    • /
    • 2022
  • Bentonite has been proposed as a buffer and backfill material for high-level radioactive waste repository. Under such repository environment conditions, bentonite is subjected to combined thermal, hydrological, mechanical, and chemical processes. This study evaluates the feasibility of applying X-ray CT technology on the characterization of bentonite under hydration conditions using a newly developed testing cell. The cylindrical cell is made of platic material, with a removable cap to place the sample, enabling to apply vertical pressure on the sample and to measure swelling pressure. The hydration test was carried out with a sample made of Gyeonju bentonite, with a dry density of 1.4 g/cm3, and a water content of 20%. The sample had a diameter of 27.5 mm and a height of 34 mm. During the test, water was injected at a constant pressure of 0.207 MPa, and lasted for 7 days. After one day of hydration, bentonite swelled and filled out the space inside the cell. Moreover, CT histograms showed how the hydration process induced an initial increase and later progressive decrease on the density of the sample. Detailed profiles of the mean CT value, CT standard deviation, and CT gradient provided more details on the hydration process of the sample and showed how the bottom and top regions exhibited a decrease on density while the middle region showed an increase, especially during the first two days of hydration. Later, the differences in CT values with respect to the initial state decreased, and were small at the end of testing. The formation and later reduction of cracks was also characterized through CT scanning.

Geochemical Characterization of Rock-Water Interaction in Groundwater at the KURT Site (물 암석 반응을 고려한 KURT 지하수의 지구화학적 특성)

  • Ryu, Ji-Hun;Kwon, Jang-Soon;Kim, Geon-Young;Koh, Yong-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.189-197
    • /
    • 2012
  • Geochemical composition of fracture filling minerals and groundwater was investigated to characterize geochemical characteristics of groundwater system at the KURT site. Minerals such as calcite, illite, laumontite, chlorite, epidote, montmorillonite, and kaolinite, as well as I/S mixed layer minerals were detected in the minerals extracted from the fracture surfaces of the core samples. The groundwater from the DB-1, YS-1 and YS-4 boreholes showed alkaline conditions with pH of higher than 8. The electrical conductivity (EC) values of the groundwater samples were around $200{\mu}S/cm$, except for the YS-1 borehole. Dissolved oxygen was almost zero in the DB-1 borehole indicating highly reduced conditions. The Cl- concentration was estimated around 5 mg/L and showed homogeneous distribution along depths at the KURT site. It might indicate the mixing between shallow groundwater and deep groundwater. The shallow groundwater from boreholes showed $Ca-HCO_3$ type, whereas deep groundwater below 300 m from the surface indicated $Na-HCO_3$ type. The isotopic values observed in the groundwater ranged from -10.4 to -8.2‰ for ${\delta}^{18}O$ and from -71.3 to -55.0‰for ${\delta}D$. In addition, the isotope-depleted water contained higher fluoride concentration. The oxygen and hydrogen isotopic values of deep groundwater were more depleted compared to the shallow groundwater. The results from age dating analysis using $^{14}C$ indicated relatively younger (2000~6000yr old) groundwater compared to other european granitic groundwaters such as Stripa (Sweden).

T-P Removal Efficiency According to Coagulant Dosage and Operating Cost Analysis (응집제 투입에 따른 인 제거 효율 및 운영비용 분석)

  • Yun, Soyoung;Ryu, Jaena;Oh, Jeill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.8
    • /
    • pp.549-556
    • /
    • 2012
  • T-P removal efficiency was analyzed according to the metal to initial T-P ratio (mole basis) with respect to the samples from different WWTPs having various initial T-P and SS conditions. Also, operating costs were calculated based on the injected coagulant amount and the amount of sludge production. Most experiments were conducted by the standard jar-test protocol. Molar ratio of coagulant dose was varied considerably according to the initial SS concentration range in secondary clarifier effluent samples which had above 0.5 mg/L of initial T-P. Based on 90% T-P removal efficiency, results were: At the initial SS range of below 10 mg/L, Alum (8%) = 11 mol Al/mol P needed and PAC (17%) = 9.6 mol Al/mol P needed; At the initial SS range of above 10 mg/L, Alum (8%) = 3.9 mol Al/mol P needed and PAC (17%) = 3.2 mol Al/mol P needed.

A Study on the Improvement Strategy of Specialized Institution for Efficient Operations of Maritime Traffic Safety Audit Scheme (해상교통안전진단제도의 효율적 운영을 위한 전문기관의 발전방향에 대한 고찰)

  • Kim, Young-Du
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.1
    • /
    • pp.18-24
    • /
    • 2015
  • To improve and modify the problems in Maritime Traffic Safety Audit(MTSA) Scheme, "Maritime Safety Research Center(MSRC)" in Korea Ship Safety and Technology Authority(KST) was designated as specialized institute for MTSA through general revision of "Enforcement of MTSA"(March 2012). However, the roles of the MSRC such as preliminary review of safety audit report, comments on target project and etc. had not been defined clearly on the related maritime safety laws compared with other specialized institutes in other similar audit scheme. In this research, the improvement strategies were proposed for development of specialized institute through SWOT analysis, gathering the opinion from related professions and also comparison with the roles and current status of operation in other similar specialized institutes. In conclusion, the 'Screen & scoping system', 'Consultant system' were proposed for efficient operation of the MTSA Scheme, and the systematic and operational improvements such as a revision of maritime safety lan and etc. were also suggested for integrated management about costal development works, development of specialized institute.

Monitoring System of Rock Mass Displacement and Temperature Variation for KURT using Optical Sensor Cable (광섬유센서케이블을 이용한 지하연구시설의 지반변위 및 온도변화 감시시스템 구축)

  • Kim, Kyung-Su;Bae, Dae-Seok;Koh, Yong-Kwon;Kim, Jung-Yul
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • The optical fiber cable acting as a sensor was embedded in the underground research tunnel and portal area in order to monitor their stability and the spatial temperature variation. This system includes two types of sensing function to monitor the distributed strain and temperature along the line, where sensor cable is installed, not a point sensing. According to the results of one year monitoring around the KURT, there is no significant displacement or movement at the tunnel wall and portal slope. However, it would be able to aware of some phenomena as an advance notice at the tunnel wall which indicates the fracturing in rockmass and shotcrete fragmentation before rock falls accidently as well as movement of earth slope. The measurement resolution for rock mass displacement is 1 mm per 1 m and it covers 30 km length with every 1m interval in minimum. In temperature, the cable measures the range of $-160{\sim}600^{\circ}C$ with $0.01^{\circ}C$ resolution according to the cable types. This means that it would be applicable to monitoring system for the safe operation of various kinds of facilities having static and/or dynamic characteristics, such as chemical plant, pipeline, rail, huge building, long and slim structures, bridge, subway and marine vessel. etc.

Engineering Geological Implications of Fault Zone in Deep Drill Cores: Microtextural Characterization of Pseudotachylite and Seismic Activity (시추코어 단층대에서의 지질공학적 의미: 슈도타킬라이트의 미세조직의 특징과 지진활동)

  • Choo, Chang-Oh;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.489-500
    • /
    • 2017
  • It is not rare that pseudotachylite, dark colored rock with glassy texture, is recognizable in deep core samples drilled up to 900 m from the surface. Pseudotachylite with widths varying few to 20 cm is sharply contacted or interlayered with the host rocks composed of Jurassic granite and Precambrian amphibolite gneiss, showing moderately ductile deformation or slight folding. Pseudotachylite occurring at varying depths in the deep drill core are slightly different in texture and thickness. There is evidence of fault gouge at shallower depths, although brittle deformation is pervasive in most drill cores and pseudotachylite is identified at random depth intervals. Under scanning electron microscope (SEM), it is evident that the surface of pseudotachylite is characterized by a smooth, glassy matrix even at micrometer scale and there is little residual fragments in the glass matrix except microcrystals of quartz with embayed shape. Such textural evidence strongly supports the idea that the pseudotachylite was generated through the friction melting related to strong seismic events. Based on X-ray diffraction (XRD) quantitative analysis, it consists of primary minerals such as quartz, feldspars, biotite, amphibole and secondary minerals including clay minerals, calcite and glassy materials. Such mineralogical features of fractured materials including pseudotachylite indicate that the fractured zone might form at low temperatures possibly below $300^{\circ}C$, which implies that the seismic activity related to the formation of pseudotachylite took place at shallow depths, possibly at most 10 km. Identification and characterization of pseudotachylite provide insight into a better understanding of the paleoseismic activity of deep grounds and fundamental information on the stability of candidate disposal sites for high-level radioactive waste.