• 제목/요약/키워드: 처분공

검색결과 354건 처리시간 0.021초

고준위폐기물 처분장의 최적 공동간격 및 처분공간격을 결정하기 위한 역학적 안정성 해석 (Mechanical Stability Analysis of a High-Level Waste Repository for Determining Optimum Cavern and Deposition Hole Spacing)

  • 박병윤;권상기
    • 터널과지하공간
    • /
    • 제10권2호
    • /
    • pp.237-248
    • /
    • 2000
  • 역학적으로 안정한 공동 및 처분공 간격을 결정하기 위해, 현재 수행 중인 열 해석의 중간 결과를 근거로 범용 해석 프로기램인 ABAQUS 버전 5.8을 이용해 3차원 유한요소해석을 수행하였다. 세 가지 초기지압을 조건으로 공동간격과 처분공 간격을 바꿔가면서 선형탄성해석을 수행하였고. 그 결과를 분석하여 굴착 후 응력재분배에 의한 암반의 거동은 어떤 경향을 가지고 있으며, 적절한 공동 간격 및 처분공 간격은 어느 정도가 좋은지를 분석하였다. 또한 각 경우 역학적인 안전계수는 어느 정도인지도 계산하였다. 국내지압분포를 근거로 도출한 초기지압 하에서는 공동간격 40m, 처분공간격 3m인 경우 안전계수 3.42가 계산되어 아주 안정한 결과를 얻었고, 스웨덴이나 캐나다의 초기지압 경힘식의 경우의 안전계수는 각각 1.19와 1.27로 비교적 낮은 값이지만 1 이상의 값이므로 응력재분배로 인한 파괴는 일어나지 않는다는 결과를 얻었다.

  • PDF

사용후핵연료 지하 처분장 배치를 위한 처분공 및 처분터널 간격 분석 (Analysis of the Disposal Tunnel and Disposal Pit Spacing for the Spent Fuel Repository Layout)

  • 이종열;이양;최희주;최종원
    • 방사성폐기물학회지
    • /
    • 제4권4호
    • /
    • pp.393-400
    • /
    • 2006
  • 고준위폐기물 심지층 처분장 설계시 주요한 고려인자는 완충재의 건전성 유지를 위하여 폐기물로부터 발생되는 열로 인하여 완충재의 온도가 $100^{\circ}C$를 넘지 않도록 하는 것이다. 본 연구에서는 이러한 요건을 만족하는 고준위폐기물 심지층 처분장 배치를 위하여 처분터널 및 처분공 간격에 대한 분석을 수행하였다. 이를 위하여, 기준 처분개념을 바탕으로 사용후핵연료의 냉각기간 및 처분터널/처분공 간격을 다양하게 설정하여, 처분시스템에서의 열적 안정성 해석 및 결과를 비교분석하였다. 분석결과, 처분장 열적 요건을 만족하는 배치는 처분터널의 간격 보다는 처분공 간격을 조절하여 배치하는 것이 유리한 것으로 판단되었다. 본 연구의 결과는 심지층 처분시설 설계시 활용될 것이다. 향후, 정확한 부지특성 자료를 통한 상세한 분석이 수행되면, 분석결과의 불확실성을 줄일 것이다.

  • PDF

고준위 폐기물 처분용기 주변에서의 열전달 해석 (Analysis of Heat Transfer around the High Level Waste Canisters)

  • 최희주;최종원;이종열;권영주
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.270-275
    • /
    • 2003
  • 고준위 폐기물 처분용기 개념설계의 일부분으로 열전달 해석을 수행하였다. 현재까지 진행된 처분개념인 지하 500m 암반 내 처분공에 4개의 PWR 사용후 핵연료 다발을 처분용기에 넣어 처분하였을 경우에 대해 온도 분포를 구하였다. 열전달 해석에는 유한요소법을 이용하는 NISA 프로그램을 이용하였다. 처분용기 내 핵연료의 열 발생에 의한 $\ulcorner$처분용기+벤토나이트 버퍼+처분터널+암반$\lrcorner$ 복합시스템의 온도분포를 구하였다. 처분터널 사이의 간격이 40m 처분공 사이의 간격이 6m인 경우 처분용기 외곽 쉘과 완충재 사이의 온도는 처분 후 15-16년에 도달할 때 최대 $87.5^{\circ}C$까지 증가하다가 서서히 감소하였다.

  • PDF

사용후핵연료의 심부시추공 처분 개념의 국내 적용성 분석 (Deep Borehole Disposal Concept of Spent Fuel for Implementation in Korea)

  • 윤수현;김창락
    • 방사성폐기물학회지
    • /
    • 제11권4호
    • /
    • pp.303-309
    • /
    • 2013
  • 사용후핵연료의 지층처분의 대안으로 심부시추공을 설치하여 지하 3-5 km 구간에 사용후핵연료를 처분하는 개념이 여러나라에서 제시된 바 있다. 특히 미국 샌디아국립연구소의 최근 연구 결과를 분석하고, 국내 적용을 위한 한국형 캐니스터 디자인과 심부시추공 디자인 개념을 처분 소요 면적과 함께 제시하였다.

국내 고준위 방사성 폐기물 심부시추공 처분을 위한 개념 연구 (A Conceptual Study for Deep Borehole Disposal of High Level Radioactive Waste in Korea)

  • 전병규;최승범;이수득;전석원
    • 터널과지하공간
    • /
    • 제29권2호
    • /
    • pp.75-88
    • /
    • 2019
  • 우리나라는 1978년 4월 고리1호기를 시작으로 지금까지 총 24기의 원전을 가동하고 있으며 2기의 원전이 건설 중이다. 원자력 발전이 지속됨에 따라 원자력발전소에서 발생하는 방사성 폐기물의 양도 늘어나게 되어 이를 영구처분하기 위한 다양한 방법이 제안되어 왔다. 국내에서는 심층처분(DGD)을 중심으로 연구가 진행되어 왔으나 심부 시추공을 활용하는 심부시추공 처분(DBD) 역시 대안으로 고려할 필요가 있다. 본 논문에서는 기술 선진국의 선행 연구결과를 종합하여 심부시추공 처분에 요구되는 요소기술들을 소개하고 이를 국내에 적용하기 위한 적용성 평가를 수행하였다. 시추공 설계, 처분부지 등에 대한 개념적 연구를 수행하였으며 마지막으로 실제 처분을 위하여 향후 요구되는 기술적 과제에 대하여 정리하였다.

고준위 방사성폐기물 심부시추공 처분시스템 개발 해외사례 분석 (A Foreign Cases Study of the Deep Borehole Disposal System for High-Level Radioactive Waste)

  • 이종열;김건영;배대석;김경수
    • 방사성폐기물학회지
    • /
    • 제12권2호
    • /
    • pp.121-133
    • /
    • 2014
  • 사용후핵연료를 포함하는 고준위 방사성폐기물을 지질학적 조건이 안정적인 지하 3~5 km의 심도에 처분할 수 있다면 다음과 같은 많은 장점이 있는 것으로 평가되고 있다. 즉, (1)암반 수리전도도가 매우 낮아 지하수가 생태계까지 도달하는데 속도가 현저히 감소되며, (2)상부층 두께로 인하여 생태계와의 이격거리 확보에 유리하고, (3)지하수가 환원상태이므로 핵종의 용해도가 매우 낮을 뿐만 아니라 (4)오랜 연령의 지하수에서는 핵종이 흡착된 콜로이드 생성과 이동이 극히 제한된다는 점이다. 이와 관련하여 심부시추공 처분(Deep Borehole Disposal) 연구는 심층 처분(Deep Geological Disposal) 시스템에 대한 이상적인 처분 대안기술로서 꾸준하게 진행되어 왔다. 본 논문에서는 최근 심부 시추기술이 비약적으로 발전됨에 따라 의미있게 연구가 진행되고 있는 심부시추공 처분시스템을 국내 적용하기 위한 초기 단계로서 해외의 심부시추공 처분시스템 기술개발 사례를 분석하였다. 이를 통하여 심부시추공 처분에 대한 일반적인 개념과 심부시추공 처분시스템 개념을 도출한 연구사례를 국가별로 정리하였다. 이들 분석결과는 향후 심부시추공 처분기술의 국내 적용을 위한 입력자료로서 유용하게 활용될 수 있을 것이다.

처분 심도의 지하수 유량이 처분공에서 누출될 것으로 가정된 방사성핵종의 이동에 끼치는 영향 평가 (Effects of Groundwater Flow Rate Distribution at a Disposal Depth on Migration of Radionuclides Released from Potential Deposition Holes)

  • 고낙열;정종태;김경수
    • 방사성폐기물학회지
    • /
    • 제12권3호
    • /
    • pp.191-198
    • /
    • 2014
  • 가상의 심지층 처분 부지에서 이루어진 지하수 유동 모의 결과를 이용하여 처분 심도의 지하수 유량 분포를 분석하고 그 결과를 처분 안전성 평가에 이용할 수 있는 방안을 제시하였다. 처분 심도의 지하수 유동량은 가상의 처분 부지를 대상으로 한 광역 및 국지적 지하수 유동 모의 결과의 지하수두 분포를 이용하여 분석하였다. 지하수 유동량 분포를 이용하여 처분공 위치의 지하수 유동량을 분석하고 최대값을 기준으로 지하수 유동량을 표준화하여 처분공에서의 처분 용기 파손 가능성을 확률적으로 도시하였다. 확률적으로 제시된 처분 용기의 파손 가능성을 이용하여, 처분 용기로부터 누출이 일어날 것으로 가정된 위치에서 지표 환경으로 이동하는 방사성 핵종의 이동량에 대한 확률론적 기대값을 계산하여 결정론적으로 평가된 이전 연구 결과와 비교하였다. 이런 평가 방법은 현장 조건을 더욱 많이 반영할 수 있는 안전성 평가 방안 구축에 기여할 수 있을 것으로 생각된다.

절리 발달 특성 및 심도 변화에 의한 방사성폐기물 처분장 주변영역에서의 열수리역학적 안정성 연구 (Thermohydromechanical Stability Study on the Joint Characteristics and Depth Variations in the Region of an Underground Radwaste Repository)

  • Kim, Jhinwung;Daeseok Bae;Park, Chongwon
    • 터널과지하공간
    • /
    • 제13권2호
    • /
    • pp.153-168
    • /
    • 2003
  • 본 연구의 목적은 지하 고준위 방사성폐기물 처분공동 주변에서의 절리 위치 변화 및 처분공동의 지하심도 변화에 따른 처분공동 및 주변 절리에서의 장기간(500년)에l 걸친 열수리역학적 연성거동 변화를 분석하고, 앞으로 처분 개념 설정에 활용 하고자 하는 것이다. 해석모델은 포화된 불연속 화강 암반, 처분공내 압축 벤토나 이트로 둘러쌓인 PWR 사용후 핵연료 및 처분용기, 그리고 처분동굴 내에 채워진 혼합 벤토나이트를 포함한다. 해석모델 내에는 2개의 절리 세트가 존재하는 것으로 가정하였다: 절리세트 1은 20m 간격의 56도 경사의 절리들로 구성되었고, 절리세트 2는 절리세트 1에 수직방향으로 20m 간격의 34도 경사의 절리들로 구성되었다. 절리위치 변화의 영향을 파악하기 위하여 500m 깊이의 모델5개, 지하 심도 영향파악을 위하여 추가로 3개의 1000m 깊이의 모델을 해석하였다.

A-KRS 수직 처분공 접촉 조건 및 처분공 간의 거리에 따른 열전달 해석 (Heat Transfer Modeling by the Contact Condition and the Hole Distance for A-KRS Vertical Disposal)

  • 김대영;김승현
    • 방사성폐기물학회지
    • /
    • 제17권3호
    • /
    • pp.313-319
    • /
    • 2019
  • A-KRS는 한국원자력연구원에서 개발한 파이로프로세싱 처리된 폐기물을 처분하는 개념이다. 고준위 방사성폐기물은 파이로프로세싱에 의하여 최소화되며, 최종 발생된 고준위 방사성폐기물은 모나자이트 세라믹 폐기물 형태로 제조된다. 모나자이트 세라믹 폐기물은 처분공에 영구 처분되어 열을 발생시킨다. 발생된 열은 폐기물을 보호하는 캐니스터 및 완충재의 온도를 상승시켜 설계 기준을 초과 시킬 수 있다. 온도는 처분공 간의 거리로 조절 가능하며 한국원자력연구원에서 해석한 바 있다. 한국원자력연구원에서 해석한 경계조건은 완벽 접촉을 가정한 것이기 때문에, 최초 처분 시에 발생하는 간격에 의해 발생하는 열 저항에 의한 온도 분포는 알 수 없다. 이를 보완하기 위하여, 본 논문에서는 최초 처분 시 존재하는 간격에 의한 열 전달 해석을 수행하였다. 또한 발열체와 캐니스터 간의 공극을 추가하여 온도 분포 해석을 수행하였다. COMSOL 전산해석 소프트웨어를 이용하여 열전달 해석을 수행하였다.