• Title/Summary/Keyword: 처분공

Search Result 362, Processing Time 0.021 seconds

Case Studies on the Experiments for Long-Term Shear Behavior of Rock Discontinuities (암반 내 불연속면의 장기 전단 거동 평가를 위한 고찰)

  • Juhyi Yim;Saeha Kwon;Seungbeom Choi;Taehyun Kim;Ki-Bok Min
    • Tunnel and Underground Space
    • /
    • v.33 no.1
    • /
    • pp.10-28
    • /
    • 2023
  • Long-term shear behavior of the rock discontinuities should be analyzed and its stability should be evaluated to ensure the long-term stability of a high-level radioactive waste disposal repository. The long-term shear behavior of the discontinuities can be modeled with creep and RSF models. The shear creep test, velocity step test, and slide-hold-slide test can be performed to determine their model parameters or analyze the shear behavior by experiments under various conditions. Testing apparatuses for direct shear, triaxial compression, and biaxial shear were mainly used and improved to reproduce the thermo-hydro-mechanical conditions of local bedrock, and it was confirmed that the shear behavior could vary. In order to design a high-level radioactive waste disposal site in Korea, the long-term behavior of rock discontinuities should be investigated in consideration of rock types, thermo-hydro-mechanical conditions, metamorphism, and restoration of shear resistance.

An Experimental Study on Measurement Method for Grain Bulk Modulus of Sandstone (사암의 입자 체적계수 측정 방법에 대한 실험적 연구)

  • Min-Jun Kim;Eui-Seob Park;Chan Park;Junhyung Choi
    • Tunnel and Underground Space
    • /
    • v.33 no.2
    • /
    • pp.71-82
    • /
    • 2023
  • This study presents a direct measurement method for grain bulk modulus, which is important hydraulic-mechanical properties of rock, and conducts the experiment to investigate the grain bulk modulus of sandstone. In addition, the factors affecting the grain bulk modulus were investigated, comparing volumetric characteristics of rocks with different properties. As a result of the experiment, it was confirmed that the theoretically estimated bulk modulus is overestimated than the direct measured one. The possibility of the difference was analyzed, discussing the existence of non-connected pore space due to particle structure of the rock. Finally, the experimental results showed that the direct measurement suggested in this study can reliably predict the grain bulk modulus of sandstone.

A Numerical Study on the Fracture Evolution and Damage at Rock Pillar Near Deposition Holes for Radioactive Waste (방사성폐기물 처분공 주변 암주에서의 균열 진전 및 손상에 대한 수치해석적 연구)

  • 이희석
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.211-221
    • /
    • 2003
  • At Aspo hard rock laboratory in Sweden, an in-situ heater experiment called "$\"{A}"{s}"{p}"{o}$ Pillar Stability Experiment (APSE)" is prepared to assess capability to predict spatting and stability in a rock mass between deposition holes for radioactive waste. To Predict reasonably fracturing process at rock pillar under a planned configuration before testing, a boundary element code FRACOD has been applied for modelling. The code has been improved to simulate explicitly fracture evolution both at rock boundaries and in intact rocks. A new inverse stress reconstruction technique using boundary element has been also developed to transfer stress field by excavation and thermal loading into the FRACOD model. This article presents the results from predictive modelling far the planned in-situ test condition. Excavation induced stresses might cause slight fracturing in the pillar walls. Typical shear fractures have been initiated and propagated near central pillar walls during 120 days of heating, but overall rock mass remained stable under the considered configuration. The effects of pre-existing joints and properties of fractures are also discussed. It is found from the results that FRACOD can properly model essential rock spatting and propagation at deep tunnels and boreholes.at deep tunnels and boreholes.

Oversea & Domestic Case Studies on Excavation Damaged Zone for Deep Geological Repository for Spent Nuclear Fuel (사용후핵연료 심층 처분장을 위한 국내외 굴착손상영역 사례연구)

  • Jeonghwan Yoon;Ki-Bok Min;Sangki Kwon;Myung Kyu Song;Sean Seungwon Lee;Tae Young Ko;Hoyoung Jeong;Youngjin Shin;Jaehoon Jung;Juhyi Yim
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.15-27
    • /
    • 2024
  • In this case study, detailed survey of the Excavation Damaged Zone (EDZ) evaluation for the deep geological repository for high level nuclear waste was conducted. Oversea and Domestic case studies were compiled and investigated. EDZ is considered a crucial factor in the performance assessment of spent fuel disposal, leading to numerous studies worldwide aiming to understand the characteristics of the EDZ and quantitatively assessment of its extent through field and laboratory tests at Underground Research Laboratory (URL) sites. To enhance the understanding of EDZ, this study begins with defining and exploring the history of EDZ, compiling factors influencing EDZ, and summarizing the impacts caused by EDZ. Subsequently, an analysis of EDZ and rock properties is performed, followed by presenting generalized outcomes, limitations drawn from previous research, and proposing future research directions.

A Study on Hydraulic Characteristics of Permeable Rock Fractures in Deep Rock Aquifer Using Geothermal Gradient and Pumping Test Data (지온경사와 양수시험 자료를 활용한 심부 암반대수층 투수성 암반균열의 수리특성 연구)

  • Hangbok Lee;Cholwoo Lee;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.312-329
    • /
    • 2024
  • In various underground research projects such as energy storage and development and radioactive waste disposal targeting deep underground, the characteristics of permeable rock fractures that serve as major pathway of groundwater flow in deep rock aquifer are considered as an important evaluation factor in the design, construction, and operation of research facilities. In Korea, there is little research and database on the location and hydraulic characteristics of permeable rock fractures and the pattern of groundwater flow patterns that may occur between fractures in deep rock boreholes. In this paper, the hydraulic characteristics of permeable rock fractures in deep rock aquifer were evaluated through the analysis of geothermal gradient and pumping test data. First, the deep geothermal distribution was identified through temperature logging, and the geothermal gradient was obtained through linear regression analysis using temperature data by depth. In addition, the hydraulic characteristics of the fractured rock were analyzed using outflow temperature obtained from pumping tests. Ultimately, the potential location and hydraulic characteristics of permeable rock fractures, as well as groundwater flow within the boreholes, were evaluated by integrating and analyzing the geophysical logging and hydraulic testing data. The process and results of the evaluation of deep permeable rock fractures proposed in this study are expected to serve as foundational data for the successful implementation of underground research projects targeting deep rock aquifers.

Status of Researches of Excavation Damaged Zone in Foreign Underground Research Laboratories Constructed for Developing High-level Radioactive Waste Disposal Techniques (고준위방사성폐기물 처분 기술개발을 위해 건설된 해외 지하연구시설에서의 암반손상대 연구 현황)

  • Park, Seunghun;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.35 no.3
    • /
    • pp.31-54
    • /
    • 2017
  • In the countries operating nuclear reactors, the development of high-level radioactive waste(HLW) disposal technique is considered as an urgent and important issue for sustainable utilization of nuclear energy. In Korea, in which a low and intermediate radioactive waste repository is already operating, the construction of an underground research laboratory for in situ validation studies became a matter of interest with increasing concerns on the management of HLW. In order to construct and to operate an underground HLW repository safely in deep underground, the stability of rock mass should be guaranteed. As an important factor on rock stability, excavation damaged zone (EDZ) has been studied in many underground research laboratories in foreign countries. For accurate evaluation of the characteristics and effects of EDZ under disposal condition, it is required to use reliable investigation method based on the analysis of previous studies in similar conditions. In this study, status of foreign underground research laboratories in other countries, approaches for investigation the characteristics, size, and effect of EDZ, and major findings from the researches were surveyed and reported. This will help the accomplishment of domestic researches for developing HLW management techniques in underground research laboratory.

Review of Site Characterization Methodology for Deep Geological Disposal of Radioactive Waste (방사성폐기물의 심층 처분을 위한 부지특성조사 방법론 해외 사례 연구)

  • Park, Kyung-Woo;Kim, Kyung-Su;Koh, Yong-Kwon;Jo, Yeonguk;Ji, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.239-256
    • /
    • 2017
  • In the process of site selection for a radioactive waste disposal, site characterization must be carried out to obtain input parameters to assess the safety and feasibility of deep geological repository. In this paper, methodologies of site characterization for radioactive waste disposal in Korea were suggested based on foreign cases of site characterization. The IAEA recommends that site characterization for radioactive waste disposal should be performed through stepwise processes, in which the site characterization period is divided into preliminary and detailed stages, in sequence. This methodology was followed by several foreign countries for their geological disposal programs. General properties related to geological environments were obtained at the preliminary site characterization stage; more detailed site characteristics were investigated during the detailed site characterization stage. The results of investigation of geology, hydro-geology, geochemistry, rock mechanics, solute transport and thermal properties at a site have to be combined and constructed in the form of a site descriptive model. Based on this site descriptive model, the site characteristics can be evaluated to assess suitability of site for radioactive waste disposal. According to foreign site characterization cases, 7 or 8 years are expected to be needed for site characterization; however, the time required may increase if the no proper national strategy is provided.

Evaluation for the Manufacturing Characteristics and Thermal Conductivity of Engineering Scale Bentonite-Sand Buffer Blocks (공학규모 벤토나이트-모래 완충재 블록의 성형특성 및 열전도도 평가)

  • Lee, Deuk-Hwan;Yoon, Seok;Kim, Jin-Seop;Lee, Gi-Jun;Kim, Ji-Won;Kim, Min-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.113-123
    • /
    • 2022
  • The required density relationship according to the press pressure of the floating die method and the homogeneity of the density distribution in the buffer block was evaluated to analyze the manufacturing characteristics of engineering scale bentonite-sand buffer blocks. In addition, the thermal conductivity was measured and compared with that of the pure bentonite buffer block to evaluate the level of thermal conductivity performance improvement of the bentonite-sand buffer material. As a result, it was confirmed that the standard deviation of dry density decreased to 0.011 and showed a homogeneous density distribution under the condition of press pressure greater than 400 kg/cm2. Furthermore, as a result of the thermal conductivity test, the thermal conductivity of the buffer with optimum moisture content conditions was 1.345 and 1.261 W/(m·K) under the press pressure of 400 and 600 kg/cm2, respectively. It increased by 16.1% and 11.0% compared to the pure bentonite buffer material. Based on the results of this study, it is judged that it can be used as fundamental data for manufacturing a homogeneous bentonite-sand buffer block on an engineering scale.

A Study on Public Order Right Based on Analysis of the Administrative Disposition Results Against the Personal Information Protection Act Violation (개인정보 보호법 위반에 따른 행정처분 결과 분석을 통한 공표명령권 도입 연구 395)

  • Jeon, Ju Hyun;Rhee, Kyung Hyune
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.11
    • /
    • pp.395-402
    • /
    • 2022
  • In case of violation of the Personal Information Protection Act, administrative dispositions will be taken according to the legal standards, and the results will be announced. However, the current method has limitations in its effectiveness as repeated administrative dispositions are increasing despite the announcement by the disclosure system of the Personal Information Protection Act. In this paper, we deploy the introduction of the 'public announcement commandment' against violators by analyzing the administrative disposition results according to the violation of the Personal Information Protection Act. It is able to strengthen the existing disclosure system for self-disclose violations by providing easy recognition to the people about the fact of violation itself against the Personal Information Protection Act. Furthermore, we analyze major industries through the industry groups and violations of laws that were subject to publication, and data published on the results of administrative dispositions for violation of the Personal Information Protection Act. Finally, we propose the legal basis for the 'public announcement commandment' which allows the violator to publish by oneself for the announcement of the fact that the corrective action has been taken.

A Study on Acoustic Emission and Micro Deformation Characteristics During Biaxial Compression Experiments of Underground Opening Damage (이축압축실험을 통한 지하공동 손상시 음향방출 및 미소변형 특성 연구)

  • Min-Jun Kim;Junhyung Choi;Taeyoo Na;Chan Park;Byung-Gon Chae;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.169-184
    • /
    • 2024
  • This study investigates acoustic emission (AE) and micro-deformation characteristics of circular openings through biaxial compression experiments. The experimental results showed a significant increase in the frequency, count, energy, and amplitude of AE signals immediately before damage occurred in the circular opening. The differences in frequency and count between before and after damage initiation were significantly pronounced, indicating suitable factors for identifying damage occurrence in circular openings. The results for digital image correlation (DIC) technique revealed that micro-deformation was concentrated around the openings, as evidenced by the spatial distribution of strain. In addition, spalling was observed at the end of the experiments. The AE and micro-deformation characteristics presented in this study are expected to serve as fundamental data for evaluating the stability of underground openings and boreholes for deep subsurface projects.