• Title/Summary/Keyword: 처분공

Search Result 364, Processing Time 0.02 seconds

Evaluation of Hydrogeological Characteristics of Deep-Depth Rock Aquifer in Volcanic Rock Area (화산암 지역 고심도 암반대수층 수리지질특성 평가)

  • Hangbok Lee;Chan Park;Junhyung Choi;Dae-Sung Cheon;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.3
    • /
    • pp.231-247
    • /
    • 2024
  • In the field of high-level radioactive waste disposal targeting deep rock environments, hydraulic characteristic information serves as the most important key factor in selecting relevant disposal sites, detailed design of disposal facilities, derivation of optimal construction plans, and safety evaluation during operation. Since various rock types are mixed and distributed in a small area in Korea, it is important to conduct preliminary work to analyze the hydrogeological characteristics of rock aquifers for various rock types and compile the resulting data into a database. In this paper, we obtained hydraulic conductivity data, which is the most representative field hydraulic characteristic of a high-depth volcanic bedrock aquifer, and also analyzed and evaluated the field data. To acquire field data, we used a high-performance hydraulic testing system developed in-house and applied standardized test methods and investigation procedures. In the process of hydraulic characteristic data analysis, hydraulic conductivity values were obtained for each depth, and the pattern of groundwater flow through permeable rock joints located in the test section was also evaluated. It is expected that the series of data acquisition methods, procedures, and analysis results proposed in this report can be used to build a database of hydraulic characteristics data for high-depth rock aquifers in Korea. In addition, it is expected that it will play a role in improving technical know-how to be applied to research on hydraulic characteristic according to various bedrock types in the future.

R&D Review on the Gap Fill of an Engineered Barrier for an HLW Repository (고준위폐기물처분장 공학적방벽의 갭채움재 기술현황)

  • Lee, Jae Owan;Choi, Young-Chul;Kim, Jin-Seop;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.405-417
    • /
    • 2014
  • In a high-level waste repository, the gap fill of the engineered barrier is an important component that influences the performance of the buffer and backfill. This paper reviewed the overseas status of R&D on the gap fill used engineered barriers, through which the concept of the gap fill, manufacturing techniques, pellet-molding characteristics, and emplacement techniques were summarized. The concept of a gap fill differs for each country depending on its disposal type and concept. Bentonite has been considered a major material of a gap fill, and clay as an inert filler. Gap fill was used in the form of pellets, granules, or a pellet-granule blend. Pellets are manufactured through one of the following techniques: static compaction, roller compression, or extrusion-cutting. Among these techniques, countries have focused on developing advanced technologies of roller compression and extrusion-cutting techniques for industrial pellet production. The dry density and integrity of the pellet are sensitive to water content, constituent material, manufacturing technique, and pellet size, and are less sensitive to the pressure applied during the manufacturing. For the emplacement of the gap fill, pouring, pouring and tamping, and pouring with vibration techniques were used in the buffer gap of the vertical deposition hole; blowing through the use of shotcrete technology and auger placement and compaction techniques have been used in the gap of horizontal deposition hole and tunnel. However, these emplacement techniques are still technically at the beginning stage, and thus additional research and development are expected to be needed.

Safety Assessment on Disposal of HLW from P&T Cycle (핵변환 잔류 고준위 방사성 폐기물 처분 성능 평가)

  • 이연명;황용수;강철형
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.132-145
    • /
    • 2001
  • The purpose and need of the study is to quantify the advantage or disadvantage of the environmental friendliness of the partitioning of nuclear fuel cycle. To this end, a preliminary study on the quantitative effect of the partition on the permanent disposal of spent PWR and CANDU fuel (HLW) was carried out. Before any analysis, the so-called reference radionuclide release scenario from a potential repository embedded into a crystalline rock was developed. Firstly, the feature, event and processes (FEPs) which lead to the release of nuclides from waste disposed of in a repository and the transport to and through the biosphere were identified. Based on the selected FEPs, the ‘Well Scenario’which might be the worst case scenario was set up. For the given scenario, annual individual doses to a local resident exposed to radioactive hazard were estimated and compared to that from direct disposal. Even though partitioning and transmutation could be an ideal solution to reduce the inventory which eventually decreases the release time as well as the peaks in the annual dose and also minimize the repository area through the proper handling of nuclides, it should overcome major disadvantages such as echnical issues on the partitioning and transmutation system, cost, and public acceptance, and environment friendly issues. In this regard, some relevant issues are also discussed to show the direction for further studies.

  • PDF

Development of an Earthquake-Resistant Model for a High-Level Waste Disposal Canister (고준위 폐기물 처분용기 내진 해석 모델 개발)

  • Choi, Young-Chul;Yoon, Chan-Hoon;Kim, Hyun-Ah;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.316-324
    • /
    • 2014
  • In the underground 500 m depth, the high level radioactive waste disposal system is made by boring the tunnel in the base rock and putting the high level waste disposal canister that is the surrounding form with the buffer material. According to the many statistics, it is the tendency that the earthquake increases in the Korean peninsula every year. In case that the earthquake is generated, the disposal canister in the rock mass can be broken due to the shearing force in the underground. Furthermore, a major environmental problems can be caused by the radioactive harmful substances. In this study, the earthquake-proof type buffer material was developed with the protection method safely on the earthquake. The main parameter having an effect on the earthquake-resistant performance was analyzed and the earthquake-proof type buffer material was designed. The shear analysis model was developed and the performance of the earthquake-proof type buffer material was evaluated by using ABAQUS.

Rock Mechanical Aspects in Site Characterization for HLW Geological Disposal: Current Status and Case Studies (고준위방사성폐기물 심층처분 부지조사를 위한 암반공학적 요소: 국내외 현황 및 사례 조사)

  • Choi, Seungbeom;Kihm, You Hong;Kim, Eungyeong;Cheon, Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.30 no.2
    • /
    • pp.136-148
    • /
    • 2020
  • Nuclear power plants have been operated in Korea since 1978, thus the high-level radioactive waste (HLW) produced from the plants has been accumulated accordingly. Hence, it is urgent to secure a final repository for HLW disposal, however, siting process should be preceded, which usually takes long time, as it requires broad and precise investigation. The investigation is generally carried out in stages, which consists of multidisciplinary approaches. In this study, the case studies mainly pertaining to rock mechanics were conducted. Rock mechanical aspects required in each stage and their applications were investigated and corresponding R&D researches were presented as well. At the same time, current research status in Korea was presented, followed by a brief future research plan with regard to the site investigation. The future research aims to produce fundamental information for siting process, and the compiled cases in this study will be utilized as references in the research.

Evaluation of Mechanical Properties for the Compacted Bentonite Buffer Materials (압축 벤토나이트 완충재의 역학 물성 평가)

  • Yoon, Seok;Hong, Chang-Ho;Kim, Taehyun;Kim, Jin-Seop
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.5-11
    • /
    • 2021
  • The compacted bentonite buffer is one of the most important components in an engineered barrier system (EBS) to dispose of high-level radioactive waste (HLW) produced by nuclear power generation. The compacted bentonite buffer has a crucial role in protecting the disposal canister against the external impact and penetration of groundwater, so it has to satisfy the thermal-hydraulic-mechanical requirements. Even though there have been various researches on the investigation of thermal-hydraulic properties, few studies have been conducted to evaluate mechanical properties for the compacted bentonite buffer. For this reason, this paper conducted a series of unconfined compression tests and obtained mechanical properties such as unconfined compressive strength, elastic modulus, and void ratio of Korean compacted bentonite specimens with different water content and dry density values. The unconfined compressive strength and elastic modulus increased, and the Poisson's ratio decreased a little with increasing dry density. It showed that unconfined compressive strength and elastic modulus were proportional to dry density. However, there was not a remarkable correlation between mechanical properties and water content.

Introduction of Barcelona Basic Model for Analysis of the Thermo-Elasto-Plastic Behavior of Unsaturated Soils (불포화토의 열·탄소성 거동 분석을 위한 Barcelona Basic Model 소개)

  • Lee, Changsoo;Yoon, Seok;Lee, Jaewon;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.38-51
    • /
    • 2019
  • Barcelona Basic Model (BBM) can describe not only swelling owing to decrease in effective stress, but also wetting-induced swelling due to decrease in suction. And the BBM can also consider increase in cohesion and apparent preconsolidation stress with suction, and decrease in the apparent preconsolidation stress with temperature. Therefore, the BBM is widely used all over the world to predict and to analyze coupled thermo-hydro-mechanical behavior of bentonite which is considered as buffer materials at the engineered barrier system in the high-level radioactive waste disposal system. However, the BBM is not well known in Korea, so this paper introduce the BBM to Korean rock engineers and geotechnical engineers. In this study, Modified Cam Clay (MCC) model is introduced before all, because the BBM was first developed as an extension of the MCC model to unsaturated soil conditions. Then, the thermo-elasto-plastic version of the BBM is described in detail.

Case Studies of Indirect Coupled Behavior of Rock for Deep Geological Disposal of Spent Nuclear Fuel (사용후핵연료 심층처분을 위한 암석의 간접복합거동 연구사례)

  • Hoyoung, Jeong;Juhyi, Yim;Ki-Bok, Min;Sangki, Kwon;Seungbeom, Choi;Young Jin, Shin
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.411-434
    • /
    • 2022
  • In deep geological disposal concept for spent nuclear fuel, it is well-known that rock mass at near-field experiences the thermal-hydraulic-mechanical (THM) coupled behavior. The mechanical properties of rock changes during the coupled process, and it is important to consider the changes into the analysis of numerical simulation and in-situ tests for long-term stability evaluation of nuclear waste disposal repository. This report collected the previous studies on indirect coupled behaviors of rock. The effects of water saturation and temperature on some mechanical properties of rock was considered, while the change in hydraulic conductivity of rock due to stress was included in the indirect coupled behavior.

방사성폐기물 처분연구를 위한 심부 시추공지하수의 지화학특성

  • 배대석;고용권;김건영;김천수;김경수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.335-338
    • /
    • 2002
  • 방사성폐기물처분연구의 일환으로 화강암지역내 심부지하수에 대한 지화학특성조사가 수행되었다. 지하수 시료는 다중패커시스템이 설치된 심부시추공으로부터 심도별로 채취되었으며, 계속적인 지화학 및 동위원소에 대한 모니터링이 진행되고 있다. 심부지하수는 pH가 약10.0이며 Na-HCO$_3$형으로 지화학적으로 특징되며, 지표로 250m이하의 심도에서는 거의 동일한 지화학적 특성을 보인다. 동위원소결과는 심부지하수는 천수기원임을 보이며, 천부지하수에 비해 약500~1,000m 높은 고도에서 함양되었음을 보여준다. 250m이하의 심부지하수는 50년이상의 체류시간을 갖음을 나타낸다.

  • PDF

A Study on Hydrogeological Characteristics of Deep-Depth Rock Aquifer by Rock Types in Korea (국내 암종별 고심도 암반대수층 수리지질특성 연구)

  • Hangbok Lee;Chan Park;Dae-Sung Cheon;Junhyung Choi;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.374-392
    • /
    • 2024
  • In order to successfully select a site for deep geological disposal of high-level radioactive waste, it is important to perform the stepwise approach along with the systematic selection and survey of evaluation parameters of geological environmental characteristics suitable for the domestic geological environment. In this study, we evaluated the characteristics of hydraulic conductivity, which is considered the most important evaluation parameter in the field of hydrogeology, targeting a deep-depth rock aquifer where actual disposal facilities are expected to be located. In particular, for the first time in Korea, we obtained in-situ pressure-flow data by directly conducting hydraulic tests in boreholes at depths ranging from 500 m to 750 m in various rock types distributed in Korea (granite/volcanic rock/gneiss/mudstone). And we derived hydraulic conductivity values by rock types and depth using verified analytical methods. For this purpose, precision hydraulic testing equipment developed in-house through this study was used, and detailed investigation procedures based on standard test methods were applied to field tests. As a result of the analysis, the average hydraulic conductivity value was found to be in the range of 10-9 m/s in all granite/volcanic rock/gneiss areas. In the mudstone area, an average hydraulic conductivity value of 10-11 m/s was derived, which was about 100 times (2 orders of magnitude) lower than that of the fractured rock aquifers. Moreover, permeability tended to slightly decrease with depth in fractured rock aquifers (granite and volcanic rock areas) containing many rock fractures. The gneiss area tended to have large local differences in permeability according to the composition of the stratum and the development of fracture zones rather than depth. In mudstone areas with weak fracture development, there was no significant variation in rock permeability according to depth. The hydraulic conductivity results by various rock types and depth presented in this study are expected to be utilized in building a foundational database for the site selection, design, and construction of disposal facilities in Korea.