• Title/Summary/Keyword: 처리조건

Search Result 8,737, Processing Time 0.039 seconds

Removal of Red Tide Organisms -2. Flocculation of Red Tide Organisms by Using Loess- (적조생물의 구제 -2. 황토에 의한 적조생물의 응집제거-)

  • KIM Sung-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.455-462
    • /
    • 2000
  • The objective of this study was to examine the physicochemical characteristics of coagulation reaction between loess and red tide organisms (RTO) and its feasibility, in developing a technology for the removal of RTO bloom in coastal sea. The physicochemical characteristics of loess were examined for a particle size distribution, surface characteristics by scanning electron microscope, zeta potential, and alkalinity and pH variations in sea water. Two kinds of RTO that were used in this study, Cylindrothen closterium and Skeietonema costatum, were sampled in Masan bay and were cultured in laboratory. Coagulation experiments were conducted using various concentrations of loess, RTO, and a jar tester. The supernatant and RTO culture solution were analyzed for pH, alkalinity, RTO cell number. A negative zeta potential of loess increased with increasing pH at $10^(-3)M$ NaCl solution and had -71.3 mV at pH 9.36. Loess had a positive zeta potential of +1,8 mV at pH 1.98, which resulted in a characteristic of material having an amphoteric surface charge. In NaCl and $CaCl_2$, solutions, loess had a decreasing negative zeta potential with increasing $Na^+\;and\;Ca^(+2)$ ion concentration and then didn't result in a charge reversal due to not occurring specific adsorption for $Na^+$ ion while resulted in a charge reversal due to occurring specific adsorption for $Ca^(+2)$ ion. In sea water, loess and RTO showed the similar zeta potential values of -112,1 and -9.2 mV, respectively and sea sand powder showed the highest zeta potential value of -25.7 mV in the clays. EDLs (electrical double-layers) of loess and RTO were extremely compressed due to high concentration of salts included in sea water, As a result, there didn't almost exist EDL repulsive force between loess and RTO approaching each other and then LVDW (London-yan der Waals) attractive force was always larger than EDL repulsive force to easily form a floe. Removal rates of RTO exponentially increased with increasing a loess concentration. The removal rates steeply increased until $800 mg/l$ of loess, and reached $100{\%}$ at 6,400 mg/l of loess. Removal rates of RTO exponentially increased with increasing a G-value. This indicated that mixing (i.e., collision among particles) was very important for a coagulation reaction. Loess showed the highest RTO removal rates in the clays.

  • PDF

A Study on the Spatial Structure of Eupchi(邑治) and Landscape Architecture of Provincial Government Office(地方官衙) in the Late Joseon Dynasty through 'Sukchunjeahdo(宿踐諸衙圖)' - Focused on the Youngyuhyun Pyeongan Province and Sincheongun Hwanghae Province - (『숙천제아도(宿踐諸衙圖)』를 통해 본 조선시대 읍치(邑治)의 공간구조와 관아(官衙) 조경 - 평안도 영유현과 황해도 신천군을 중심으로 -)

  • Shin, Sang sup;Lee, Seung yoen
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.2
    • /
    • pp.86-103
    • /
    • 2016
  • 'Sukchunjeahdo' illustration-book, which was left by Han, Pil-gyo(韓弼敎 : 1807~1878)in the late Joseon Dynasty, includes pictorial record paintings containing government offices, Eupchi, and Feng Shui condition drawn by Gyehwa(界畵) method Sabangjeondomyobeop(四方顚倒描法) and is the rare historical material that help to understand spatial structure and landscape characteristics. Youngyuhyun(永柔縣) and Sincheongun(信川郡) town, the case sites of this study, show Feng Shui foundation structure and placement rules of government offices in the Joseon Period are applied such as 3Dan 1Myo(三壇一廟 : Sajikdan, Yeodan, Seonghwangdan, Hyanggyo), 3Mun 3Jo(三門三朝 : Oeah, Dongheon, Naeah) and Jeonjohuchim(前朝後寢) etc. by setting the upper and lower hierarchy of the north south central axis. The circulation system is the pattern that roads are segmented around the marketplace of the entrance of the town and the structure is that heading to the north along the internal way leads to the government office and going out to the main street leads to the major city. Baesanimsu(背山臨水 : Mountain in backward and water in front) foundation, back hill pine forest, intentionally created low mountains and town forest etc. showed landscape aesthetics well suited for the environmental comfort condition such as microclimate control, natural disaster prevention, psychological stability reflecting color constancy principle etc. and tower pavilions were built throughout the scenic spot, reflecting life philosophy and thoughts of contemporaries such as physical and mental discipline, satisfied at the reality of poverty, returning to nature etc. For government office landscape, shielding and buffer planting, landscape planting etc. were considered around Gaeksa(客舍), Dongheon(東軒), Naeah(內衙) backyard and deciduous tree s and flowering trees were cultivated as main species and in case of Gaeksa, tiled pavilions and pavilions topped with poke weed in tetragonal pond were introduced to Dongheon and Naeah and separate pavilions were built for the purpose of physical and mental discipline and military training such as archery. Back hill pine tree forest formed back landscape and zelkova, pear trees, willow trees, old pine trees, lotus, flowering trees etc. were cultivated as gardening trees and Feng-Shui forest with willow trees as its main species was created for landscape and practical purposes. On the other hand, various cultural landscape elements etc. were introduced such as pavilions, pond serving as fire protection water(square and circle), stone pagoda and stone Buddha, fountains and wells, monument houses, flagpoles etc. In case of Sincheongun town forest(邑藪), Manhagwan(挽河觀), Moonmujeong(文武井), Sangjangdae(上場岱) and Hajangdae(下場岱) Market place, Josanshup<(造山藪 : Dongseojanglim(東西長林)>, Namcheon(南川) etc. were combined and community cultural park with the nature of modern urban park was operated. In this context, government office landscape shows the garden management aspect where square pond and pavilions, flowering trees are harmonized around side pavilion and backyard. Also, environmental design technique not biased to aesthetics and ideological moral philosophy and comprehensively considering functionality (shielding and fire prevention, microclimate control, etc.) and environmental soundness etc. is working.

SANET-CC : Zone IP Allocation Protocol for Offshore Networks (SANET-CC : 해상 네트워크를 위한 구역 IP 할당 프로토콜)

  • Bae, Kyoung Yul;Cho, Moon Ki
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.87-109
    • /
    • 2020
  • Currently, thanks to the major stride made in developing wired and wireless communication technology, a variety of IT services are available on land. This trend is leading to an increasing demand for IT services to vessels on the water as well. And it is expected that the request for various IT services such as two-way digital data transmission, Web, APP, etc. is on the rise to the extent that they are available on land. However, while a high-speed information communication network is easily accessible on land because it is based upon a fixed infrastructure like an AP and a base station, it is not the case on the water. As a result, a radio communication network-based voice communication service is usually used at sea. To solve this problem, an additional frequency for digital data exchange was allocated, and a ship ad-hoc network (SANET) was proposed that can be utilized by using this frequency. Instead of satellite communication that costs a lot in installation and usage, SANET was developed to provide various IT services to ships based on IP in the sea. Connectivity between land base stations and ships is important in the SANET. To have this connection, a ship must be a member of the network with its IP address assigned. This paper proposes a SANET-CC protocol that allows ships to be assigned their own IP address. SANET-CC propagates several non-overlapping IP addresses through the entire network from land base stations to ships in the form of the tree. Ships allocate their own IP addresses through the exchange of simple requests and response messages with land base stations or M-ships that can allocate IP addresses. Therefore, SANET-CC can eliminate the IP collision prevention (Duplicate Address Detection) process and the process of network separation or integration caused by the movement of the ship. Various simulations were performed to verify the applicability of this protocol to SANET. The outcome of such simulations shows us the following. First, using SANET-CC, about 91% of the ships in the network were able to receive IP addresses under any circumstances. It is 6% higher than the existing studies. And it suggests that if variables are adjusted to each port's environment, it may show further improved results. Second, this work shows us that it takes all vessels an average of 10 seconds to receive IP addresses regardless of conditions. It represents a 50% decrease in time compared to the average of 20 seconds in the previous study. Also Besides, taking it into account that when existing studies were on 50 to 200 vessels, this study on 100 to 400 vessels, the efficiency can be much higher. Third, existing studies have not been able to derive optimal values according to variables. This is because it does not have a consistent pattern depending on the variable. This means that optimal variables values cannot be set for each port under diverse environments. This paper, however, shows us that the result values from the variables exhibit a consistent pattern. This is significant in that it can be applied to each port by adjusting the variable values. It was also confirmed that regardless of the number of ships, the IP allocation ratio was the most efficient at about 96 percent if the waiting time after the IP request was 75ms, and that the tree structure could maintain a stable network configuration when the number of IPs was over 30000. Fourth, this study can be used to design a network for supporting intelligent maritime control systems and services offshore, instead of satellite communication. And if LTE-M is set up, it is possible to use it for various intelligent services.

The Advancement of Underwriting Skill by Selective Risk Acceptance (보험Risk 세분화를 통한 언더라이팅 기법 선진화 방안)

  • Lee, Chan-Hee
    • The Journal of the Korean life insurance medical association
    • /
    • v.24
    • /
    • pp.49-78
    • /
    • 2005
  • Ⅰ. 연구(硏究) 배경(背景) 및 목적(目的) o 우리나라 보험시장의 세대가입율은 86%로 보험시장 성숙기에 진입하였으며 기존의 전통적인 전업채널에서 방카슈랑스의 도입, 온라인전문보험사의 출현, TM 영업의 성장세 等멀티채널로 진행되고 있음 o LTC(장기간병), CI(치명적질환), 실손의료보험 등(等)선 진형 건강상품의 잇따른 출시로 보험리스크 관리측면에서 언더라이팅의 대비가 절실한 시점임 o 상품과 마케팅 等언더라이팅 측면에서 매우 밀접한 영역의 변화에 발맞추어 언더라이팅의 인수기법의 선진화가 시급히 요구되는 상황하에서 위험을 적절히 분류하고 평가하는 선진적 언더라이팅 기법 구축이 필수 적임 o 궁극적으로 고객의 다양한 보장니드 충족과 상품, 마케팅, 언더라이팅의 경쟁력 강화를 통한 보험사의 종합이익 극대화에 기여할 수 있는 방안을 모색하고자 함 Ⅱ. 선진보험시장(先進保險市場)Risk 세분화사례(細分化事例) 1. 환경적위험(環境的危險)에 따른 보험료(保險料) 차등(差等) (1) 위험직업 보험료 할증 o 미국, 유럽등(等) 대부분의 선진시장에서는 가입당시 피보험자의 직업위험도에 따라 보험료를 차등 적용중(中)임 o 가입하는 보장급부에 따라 직업 분류방법 및 할증방식도 상이하며 일반사망과 재해사망,납입면제, DI에 대해서 별도의 방법을 사용함 o 할증적용은 표준위험율의 일정배수를 적용하여 할증 보험료를 산출하거나, 가입금액당 일정한 추가보험료를 적용하고 있음 - 광부의 경우 재해사망 가입시 표준위험율의 300% 적용하며, 일반사망 가입시 $1,000당 $2.95 할증보험료 부가 (2) 위험취미 보험료 할증 o 취미와 관련 사고의 지속적 다발로 취미활동도 위험요소로 인식되어 보험료를 차등 적용중(中)임 o 할증보험료는 보험가입금액당 일정비율로 부가(가입 금액과 무관)하며, 신종레포츠 등(等)일부 위험취미는 통계의 부족으로 언더라이터가 할증율 결정하여 적용함 - 패러글라이딩 년(年)$26{\sim}50$회(回) 취미생활의 경우 가입금액 $1,000당 재해사망 $2, DI보험 8$ 할증보험료 부가 o 보험료 할증과는 별도로 위험취미에 대한 부담보를 적용함. 위험취미 활동으로 인한 보험사고 발생시 사망을 포함한 모든 급부에 대한 보장을 부(不)담보로 인수함. (3) 위험지역 거주/ 여행 보험료 할증 o 피보험자가 거주하고 있는 특정국가의 임시 혹은 영구적 거주시 기후위험, 거주지역의 위생과 의료수준, 여행위험, 전쟁과 폭동위험 등(等)을 고려하여 평가 o 일반사망, 재해사망 등(等)보장급부별로 할증보험료 부가 또는 거절 o 할증보험료는 보험全기간에 대해 동일하게 적용 - 러시아의 경우 가입금액 $1,000당 일반사망은 2$의 할증보험료 부가, 재해사망은 거절 (4) 기타 위험도에 대한 보험료 차등 o 비행관련 위험은 세가지로 분류(항공운송기, 개인비행, 군사비행), 청약서, 추가질문서, 진단서, 비행이력 정보를 바탕으로 할증보험료를 부가함 - 농약살포비행기조종사의 경우 가입금액 $1,000당 일반사망 6$의 할증보험료 부가, 재해사망은 거절 o 미국, 일본등(等)서는 교통사고나 교통위반 관련 기록을 활용하여 무(無)사고운전자에 대해 보험료 할인(우량체 위험요소로 활용) 2. 신체적위험도(身體的危險度)에 따른 보험료차등(保險料差等) (1) 표준미달체 보험료 할증 1) 총위험지수 500(초과위험지수 400)까지 인수 o 300이하는 25점단위, 300점 초과는 50점 단위로 13단계로 구분하여 할증보험료를 적용중(中)임 2) 삭감법과 할증법을 동시 적용 o 보험금 삭감부분만큼 할증보험료가 감소하는 효과가 있어 청약자에게 선택의 기회를 제공할수 있으며 고(高)위험 피보험자에게 유용함 3) 특정암에 대한 기왕력자에 대해 단기(Temporary)할증 적용 o 질병성향에 따라 가입후 $1{\sim}5$년간 할증보험료를 부가하고 보험료 할증 기간이 경과한 후에는 표준체보험료를 부가함 4) 할증보험료 반환옵션(Return of the extra premium)의 적용 o 보험계약이 유지중(中)이며, 일정기간 생존시 할증보험료가 반환됨 (2) 표준미달체 급부증액(Enhanced annuity) o 영국에서는 표준미달체를 대상으로 연금급부를 증가시킨 증액형 연금(Enhanced annuity) 상품을 개발 판매중(中)임 o 흡연, 직업, 병력 등(等)다양한 신체적, 환경적 위험도에 따라 표준체에 비해 증액연금을 차등 지급함 (3) 우량 피보험체 가격 세분화 o 미국시장에서는 $8{\sim}14$개 의적, 비(非)의적 위험요소에 대한 평가기준에 따라 표준체를 최대 8개 Class로 분류하여 할인보험료를 차등 적용 - 기왕력, 혈압, 가족력, 흡연, BMI, 콜레스테롤, 운전, 위험취미, 거주지, 비행력, 음주/마약 등(等) o 할인율은 회사, Class, 가입기준에 따라 상이(최대75%)하며, 가입연령은 최저 $16{\sim}20$세, 최대 $65{\sim}75$세, 최저보험금액은 10만달러(HIV검사가 필요한 최저 금액) o 일본시장에서는 $3{\sim}4$개 위험요소에 따라 $3{\sim}4$개 Class로 분류 우량체 할인중(中)임 o 유럽시장에서는 영국 등(等)일부시장에서만 비(非)흡연할인 또는 우량체할인 적용 Ⅲ. 국내보험시장(國內保險市場) 현황(現況)및 문제점(問題點) 1. 환경적위험도(環境的危險度)에 따른 가입한도제한(加入限度制限) (1) 위험직업 보험가입 제한 o 업계공동의 직업별 표준위험등급에 따라 각 보험사 자체적으로 위험등급별 가입한도를 설정 운영중(中)임. 비(非)위험직과의 형평성, 고(高)위험직업 보장 한계, 수익구조 불안정화 등(等)문제점을 내포하고 있음 - 광부의 경우 위험1급 적용으로 사망 최대 1억(億), 입원 1일(日) 2만원까지 제한 o 금융감독원이 2002년(年)7월(月)위험등급별 위험지수를 참조 위험율로 인가하였으나, 비위험직은 70%, 위험직은 200% 수준으로 산정되어 현실적 적용이 어려움 (2) 위험취미 보험가입 제한 o 해당취미의 직업종사자에 준(準)하여 직업위험등급을 적용하여 가입 한도를 제한하고 있음. 추가질문서를 활용하여 자격증 유무, 동호회 가입등(等)에 대한 세부정보를 입수하지 않음 - 패러글라이딩의 경우 위험2급을 적용, 사망보장 최대 2 억(億)까지 제한 (3) 거주지역/ 해외여행 보험가입 제한 o 각(各)보험사별로 지역적 특성상 사고재해 다발 지역에 대해 보험가입을 제한하고 있음 - 강원, 충청 일부지역 상해보험 가입불가 - 전북, 태백 일부지역 입원급여금 1일(日)2만원이내 o 해외여행을 포함한 해외체류에 대해서는 일정한 가입 요건을 정하여 운영중(中)이며, 가입한도 설정 보험가입을 제한하거나 재해집중보장 상품에 대해 거절함 - 러시아의 경우 단기체류는 위험1급 및 상해보험 가입 불가, 장기 체류는 거절처리함 2. 신체적위험도(身體的危險度)에 따른 인수차별화(引受差別化) (1) 표준미달체 인수방법 o 체증성, 항상성 위험에 대한 초과위험지수를 보험금삭감법으로 전환 사망보험에 적용(최대 5년(年))하여 5년(年)이후 보험 Risk노출 심각 o 보험료 할증은 일부 회사에서 주(主)보험 중심으로 사용중(中)이며, 총위험지수 300(8단계)까지 인수 - 주(主)보험 할증시 특약은 가입 불가하며, 암 기왕력자는 대부분 거절 o 신체부위 39가지, 질병 5가지에 대해 부담보 적용(입원, 수술 등(等)생존급부에 부담보) (2) 비(非)흡연/ 우량체 보험료 할인 o 1999년(年)최초 도입 이래 $3{\sim}4$개의 위험요소로 1개 Class 운영중(中)임 S생보사의 경우 비(非)흡연우량체, 비(非)흡연표준체의 2개 Class 운영 o 보험료 할인율은 회사, 상품에 따라 상이하며 최대 22%(영업보험료기준)임. 흡연여부는 뇨스틱을 활용 코티닌테스트를 실시함 o 우량체 판매는 신계약의 $2{\sim}15%$수준(회사의 정책에 따라 상이) Ⅳ. 언더라이팅 기법(技法) 선진화(先進化) 방안(方案) 1. 직업위험도별 보험료 차등 적용 o 생 손보 직업위험등급 일원화와 연계하여 3개등급으로 위험지수개편, 비위험직 기준으로 보험요율 차별적용 2. 위험취미에 대한 부담보 적용 o 해당취미를 원인으로 보험사고(사망포함) 발생시 부담보 제도 도입 3. 표준미달체 인수기법 선진화를 통한 인수범위 대폭 확대 o 보험료 할증법 적용 확대를 통한 Risk 헷지로 총위험지수 $300{\rightarrow}500$으로 확대(거절건 최소화) 4. 보험료 할증법 보험금 삭감 병행 적용 o 삭감기간을 적용한 보험료 할증방식 개발, 고객에게 선택권 제공 5. 기한부 보험료할증 부가 o 위암, 갑상선암 등(等)특정암의 성향에 따라 위험도가 높은 가입초기에 평준할증보험료를 적용하여 인수 6. 보험료 할증법 부가특약 확대 적용, 부담보 병행 사용 o 정기특약 등(等)사망관련 특약에 할증법 확대, 생존급부 특약은 부담보 7. 표준체 고객 세분화 확대 o 콜레스테롤, HDL 등(等)위험평가요소 확대를 통한 Class 세분화 Ⅴ. 기대효과(期待效果) 1. 고(高)위험직종사자, 위험취미자, 표준미달체에 대한 보험가입 문호개방 2. 보험계약자간 형평성 제고 및 다양한 고객의 보장니드에 부응 3. 상품판매 확대 및 Risk헷지를 통한 수입보험료 증대 및 사차익 개선 4. 본격적인 가격경쟁에 대비한 보험사 체질 개선 5. 회사 이미지 제고 및 진단 거부감 해소, 포트폴리오 약화 방지 Ⅵ. 결론(結論) o 종래의 소극적이고 일률적인 인수기법에서 탈피하여 피보험자를 다양한 측면에서 위험평가하여 적정 보험료 부가와 합리적 가입조건을 제시하는 적절한 위험평가 수단을 도입하고, o 언더라이팅 인수기법의 선진화와 함께 언더라이팅 인력의 전문화, 정보입수 및 시스템 인프라의 구축 등이 병행함으로써, o 보험사의 사차손익 관리측면에서 뿐만 아니라 보험시장 개방 및 급변하는 보험환경에 대비한 한국 생보언더라이팅 경쟁력 강화 및 언더라이터의 글로벌화에도 크게 기여할 것임.

  • PDF

The Use of Radioactive $^{51}Cr$ in Measurement of Intestinal Blood Loss ($^{51}Cr$을 사용(使用)한 장관내(賜管內) 출혈량측정법(出血量測定法))

  • Lee, Mun-Ho
    • The Korean Journal of Nuclear Medicine
    • /
    • v.4 no.1
    • /
    • pp.19-26
    • /
    • 1970
  • 1. Sixteen normal healthy subjects free from occult blood in the stool were selected and administered with their $^{51}Cr$ labeled own blood via duodenal tube and the recovery rate of radioactivity in feces and urine was measured. The average fecal recovery rate was 90.7 per cent ($85.7{\sim}97.7%$) of the administered radioactivity, and the average urinary excretion rate was 0.8 per cent ($0.5{\sim}1.5%$) 2. There was a close correlation between the amount of blood administered and the recovery rate from the feces; the more the blood administered, the higher the recovery rate was. It was also found that the administration of the tagged blood in the amount exceeding 15ml was suitable for measuring the radioactivity in the stools. 3. In five normal healthy subjects whose circulating erythrocytes had been tagged with $^{51}Cr$, there was little fecal excretion of radioactivity (average 0.9 ml of blood per day). This excretion is not related to hemorrhage and the main route of excretion of such an negligible radioactivity was postulated as gastric juice and bile. 4. A comparison of the radioactivity in the blood and feces of the patients with $^{51}Cr$ labeled erythrocytes seems to be a valid way of estimating intestinal blood loss.

  • PDF

Studies on the Germination Characteristics of Sesame (Sesamum indicum L.) (참깨의 발아특성(發芽特性)에 관(關)한 연구(硏究))

  • Kim, Choong Soo
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.1
    • /
    • pp.28-60
    • /
    • 1983
  • This study was carried out to define the effects of external factors including temperature, moisture, oxygen and light quality on the germination of sesame seeds and to investigate the change of major chemical constituents of seeds during germination. The results obtained are summarized as follows: 1. The average germination ratio was from 95.8% to 97.2% when it was tested every $5^{\circ}C$ intervals from $20^{\circ}C$ to $35^{\circ}C$ and no significant difference in germination ratio was found within $20^{\circ}C$ to $35^{\circ}C$. But the germination ratio dropped rapidly to 32.2% when seeds were germinated at $15^{\circ}C$ and the coefficient of variation become greater(77%) 2. The days required for germination ranged from 1.16 to 1. 64 at the temperatures of $35^{\circ}C$ to $25^{\circ}C$ and they were 3.07 and 10.4 at the temperatures of $20^{\circ}C$ and $15^{\circ}C$, respectively. 3. Considering the germination ratio and days needed, $15^{\circ}C$ was assumed to be the minimum temperature for germination practically and this temperature is recommended for testing low temperature tolerance of seed germination of sesame cultivars. 4. The varieties shown the highest low temperature tolerance were Shirogoma and Turkey. The next varieties shown some degree of low temperature germination were Suweon #29, Naebok and IS 58. The varieties with 70 to 80% of germination ratio were Maepo, Suweon #14, Kimpo, Moondeok, and Haenam. Among the 90 varieties tested, the varieties with comparatively high degree of low temperature tolerance were about 10%, and 70% of the low temperature tolerant varieties were domestic varieties. 5. At $12^{\circ}C$ the Shirogoma was the only variety which showed over 50% of germination ratio, 71.4% of the varieties showed less than 20% of germination ratio. When the temperature was raised to $27^{\circ}C$ 18 days after placement at $12^{\circ}C$ all the varieties showed over 90% of germination ratio within 2days. 6. The amounts of water imbibition needed for seed germination were 0.48 to 0.62 times of the seed dry weight at $25^{\circ}C$ and were significantly different among sesame cultivars. About 63% of water required for germination was imbibed in 2 hours after placement of seeds under the germination condition. 7. Under saturated moisture condition the average germination ratio was 0.42%. In the soil of which water potential was -0.4bar 64.8% of the seeds germinated and the most adequate soil water potential for sesame seed germination was about -0.4 to -5.5 bar. The germination ratio decreased as the soil water potential declined below -5.5 bar. 8. Six out of 10 varieties were not influenced by 5% of oxygen in air germination chamber, while varieties such as Yecheon, PI 158073, IS 103 and Euisangcheon showed 64 to 91% of germination under the 5% oxygen content. Under anaerobic condition, cotyledones were not emerged but only hypocotyl was emerged and elongated. The germination ratio of IS 103 decreased significantly under anaerobic condition. 9. When the seeds were dried for 24 hours after 12 hours imbibition of water, the seeds of Cheongsong did not lose their germination ability and 27.5% was germinated but Suweon #9 and Early Russian failed to germinate. However, the germination ratio of IS 103 decreased when the seed were dried 24 hours after 4 hours imbibition of water and the germination ability of IS 103 was maintained even though the seeds were dried for 24 hours after 24 hours imbibition of water. 10. During germination, sugar content of sesame seed increased rapidly and activity of ${\alpha}$-amylase increased gradually while starch content decreased significantly. The rates of increase in sugar content and enzyme activity and decrease in starch content were significantly lower at $15^{\circ}C$ compared with those at $25^{\circ}C$. 11. During germination of sesame seeds, lipid content in the seeds dropped rapidly and the activity of alkaline lipase increased significantly at early stage of germination. The rate of decrease in lipid content and increase in emzyme activity was lower at $15^{\circ}C$ than at $25^{\circ}C$. 12. Four out of 6 varieties were not affected in germination by light wave length. But Suweon #8 was inhibited in germination by 600-650nm. and IS 103 by 600 to 650nm and 500 to 550nm of light wave length. Suweon #8 showed high germination ratio under 650 to 760 nm and 500 to 560nm, and IS 103 under 400 to 470nm and complete darkness. 13. The germination ratios increased significantly in the seeds of which 1000 grain weight is heavier. When the seeds were placed at soil 4cm deep, Cheongsong and Early Russian failed to emerge their cotyledones, but Suweon #9 and IS 103 showed 32.5 and 50% cotyledone emergence, respectively. The extracts from sesame plant and soil where the sesame was cultivated previously did not affect in the-germination of sesame seeds. 14. The covering by black or transparent polyethylene films increased germination ratio compared with uncovered seeds. The covering was effective in shortening the days needed for germination and in improving the early seedling growth, number of capsules per plant and grain yield. Difference was not so seizable between the two polyethylene films but the transparent film appeared somewhat more effective than the black one. 15. Simcheon, Cheongsong. Suweon #9. PI 158073 and IS 103 showed lower rate of water absorbtion by seed during germination and Suweon #8, Suweon #26, Orotall and Euisangcheon showed high increase in seed weight after water absorbtion by seed.

  • PDF

Studies on the Consumptine Use of Irrigated Water in Paddy Fields During the Growing of Rice Plants(III) (벼생유기간중의 논에서의 분석소비에 관한 연구(II))

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1775-1782
    • /
    • 1969
  • The results of the study on the consumptine use of irrigated water in paddy fields during the growing season of rice plants are summarized as follows. 1. Transpiration and evaporation from water surface. 1) Amount of transpiration of rice plant increases gradually after transplantation and suddenly increases in the head swelling period and reaches the peak between the end of the head swelling poriod and early period of heading and flowering. (the sixth period for early maturing variety, the seventh period for medium or late maturing varieties), then it decreases gradually after that, for early, medium and late maturing varieties. 2) In the transpiration of rice plants there is hardly any difference among varieties up to the fifth period, but the early maturing variety is the most vigorous in the sixth period, and the late maturing variety is more vigorous than others continuously after the seventh period. 3) The amount of transpiration of the sixth period for early maturing variety of the seventh period for medium and late maturing variety in which transpiration is the most vigorous, is 15% or 16% of the total amount of transpiration through all periods. 4) Transpiration of rice plants must be determined by using transpiration intensity as the standard coefficient of computation of amount of transpiration, because it originates in the physiological action.(Table 7) 5) Transpiration ratio of rice plants is approximately 450 to 480 6) Equations which are able to compute amount of transpiration of each variety up th the heading-flowering peried, in which the amount of transpiration of rice plants is the maximum in this study are as follows: Early maturing variety ; Y=0.658+1.088X Medium maturing variety ; Y=0.780+1.050X Late maturing variety ; Y=0.646+1.091X Y=amount of transpiration ; X=number of period. 7) As we know from figure 1 and 2, correlation between the amount evaporation from water surface in paddy fields and amount of transpiration shows high negative. 8) It is possible to calculate the amount of evaporation from the water surface in the paddy field for varieties used in this study on the base of ratio of it to amount of evaporation by atmometer(Table 11) and Table 10. Also the amount of evaporation from the water surface in the paddy field is to be computed by the following equations until the period in which it is the minimum quantity the sixth period for early maturing variety and the seventh period for medium or late maturing varieties. Early maturing variety ; Y=4.67-0.58X Medium maturing variety ; Y=4.70-0.59X Late maturing variety ; Y=4.71-0.59X Y=amount of evaporation from water surface in the paddy field X=number of period. 9) Changes in the amount of evapo-transpiration of each growing period have the same tendency as transpiration, and the maximum quantity of early maturing variety is in the sixth period and medium or late maturing varieties are in the seventh period. 10) The amount of evapo-transpiration can be calculated on the base of the evapo-transpiration intensity (Table 14) and Tablet 12, for varieties used in this study. Also, it is possible to compute it according to the following equations with in the period of maximum quantity. Early maturing variety ; Y=5.36+0.503X Medium maturing variety ; Y=5.41+0.456X Late maturing variety ; Y=5.80+0.494X Y=amount of evapo-transpiration. X=number of period. 11) Ratios of the total amount of evapo-transpiration to the total amount of evaporation by atmometer through all growing periods, are 1.23 for early maturing variety, 1.25 for medium maturing variety, 1.27 for late maturing variety, respectively. 12) Only air temperature shows high correlation in relation between amount of evapo-transpiration and climatic conditions from the viewpoint of Korean climatic conditions through all growing periods of rice plants. 2. Amount of percolation 1) The amount of percolation for computation of planning water requirment ought to depend on water holding dates. 3. Available rainfall 1) The available rainfall and its coefficient of each period during the growing season of paddy fields are shown in Table 8. 2) The ratio (available coefficient) of available rainfall to the amount of rainfall during the growing season of paddy fields seems to be from 65% to 75% as the standard in Korea. 3) Available rainfall during the growing season of paddy fields in the common year is estimated to be about 550 millimeters. 4. Effects to be influenced upon percolation by transpiration of rice plants. 1) The stronger absorbtive action is, the more the amount of percolation decreases, because absorbtive action of rice plant roots influence upon percolation(Table 21, Table 22) 2) In case of planting of rice plants, there are several entirely different changes in the amount of percolation in the forenoon, at night and in the afternoon during the growing season, that is, is the morning and at night, the amount of percolation increases gradually after transplantation to the peak in the end of July or the early part of August (wast or soil temperature is the highest), and it decreases gradually after that, neverthless, in the afternoon, it decreases gradually after transplantation to be at the minimum in the middle of August, and it increases gradually after that. 3) In spite of the increasing amount of transpiration, the amount of daytime percolation decreases gadually after transplantation and appears to suddenly decrease about head swelling dates or heading-flowering period, but it begins to increase suddenly at the end of August again. 4) Changs of amount of percolation during all growing periods show some variable phenomena, that is, amount of percolation decreases after the end of July, and it increases in end August again, also it decreases after that once more. This phenomena may be influenced complexly from water or soil temperature(night time and forenoon) as absorbtive action of rice plant roots. 5) Correlation between the amount of daytime percolation and the amount of transpiration shows high negative, amount of night percolation is influenced by water or soil temperature, but there is little no influence by transpiration. It is estimated that the amount of a daily percolation is more influenced by of other causes than transpiration. 6) Correlation between the amount of night percoe, lation and water or soil temp tureshows high positive, but there is not any correlation between the amount of forenoon percolation or afternoon percolation and water of soil temperature. 7) There is high positive correlation which is r=+0.8382 between the amount of daily percolation of planting pot of rice plant and amount and amount of daily percolation of non-planting pot. 8) The total amount of percolation through all growin. periods of rice plants may be influenced more from specific permeability of soil, water of soil temperature, and otheres than transpiration of rice plants.

  • PDF