• Title/Summary/Keyword: 처리습지

Search Result 321, Processing Time 0.029 seconds

Feasibility Study of Wetland-pond Systems for Water Quality Improvement and Agricultural Reuse (습지-연못 연계시스템에 의한 수질개선과 농업적 재이용 타당성 분석)

  • Jang, Jae-Ho;Jung, Kwang-Wook;Ham, Jong-Hwa;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.344-354
    • /
    • 2004
  • A pilot study was performed from September 2000 to April 2004 to examine the feasibility of the wetland-pond system for the agricultural reuse of reclaimed water. The wetland system was a subsurface flow type, with a hydraulic residence time of 3.5 days, and the subsequent pond was 8 $m^3$ in volume (2 m ${\times}$ 2 m ${\times}$ 2 m) and operated with intermittent-discharge and continuous flow types. The wetland system was effective in treating the sewage; median removal efficiencies of $BOD_5$ and TSS were above 70.0%, with mean effluent concentrations of 27.1 and 16.8 mg $L^{-1}$, respectively, for these constituents. However, they did often exceed the effluent water quality standards of 20 mg $L^{-1}$. Removal of T-N and T-P was relatively less effective and mean effluent concentrations were approximately 103.2 and 7.2 mg $L^{-1}$, respectively. The wetland system demonstrated high removal rate (92 ${\sim}$ 90%) of microorganisms, but effluent concentrations were in the range of 300 ${\sim}$ 16,000 MPN 100 $mL^{-1}$ which is still high for agricultural reuse. The subsequent pond system provided further treatment of the wetland effluent, and especially additional microorganisms removal in addition to wetland-pond system could reduce the mean concentration to 1,000 MPN 100 $mL^{-1}$ from about $10^5$ MPN 100 $mL^{-1}$ of wetland influent. Other parameters in the pond system showed seasonal variation, and the upper layer of the pond water column became remarkably clear immediately after ice melt. Overall, the wetland system was found to be adequate for treating sewage with stable removal efficiency, and the subsequent pond was effective for further polishing. This study concerned agricultural reuse of reclaimed water using natural systems. Considering stable performance and effective removal of bacterial indicators as well as other water quality parameters, low maintenance, and cost-effectiveness, wetland- pond system was thought to be an effective and feasible alternative for agricultural reuse of reclaimed water in rural area.

Evaluation of Wastewater Treatment Efficiency in Dongbokcheon Constructed Wetlands for Treating Non-point Source Pollution at Different Treatment Time and Wastewater Loading (비점오염원 처리를 위한 동복천 인공습지의 시기별 및 부하량별 수처리 효율 평가)

  • Lee, Sang-Gyu;Seo, Dong-Cheol;Kang, Se-Won;Choi, Ik-Won;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Lee, Jun-Bae;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.929-936
    • /
    • 2011
  • To treat non-point source pollution in Dongbok lake, removal efficiencies of pollutants were investigated in Dongbokcheon constructed wetlands (CWs) at different treatment time and wastewater loading. The wetlands consisted of forebay, wetlands ($1^{st}$, $2^{nd}$, $3^{rd}$, $4^{th}$, $5^{th}$, $6^{th}$, $7^{th}$, and $8^{th}$ wetlands) and sedimentation pond. The concentrations of BOD, SS, T-N, and T-P in inflow ranged $0.85{\sim}3.14mg\;L^{-1}$, $3.33{\sim}9.70mg\;L^{-1}$, $0.64{\sim}5.33mg\;L^{-1}$, and $0.03{\sim}0.10mg\;L^{-1}$ from April to October in 2008, respectively. The removal rates of BOD, SS, T-N, and T-P in Dongbokcheon CWs were 34%, 5%, 31%, and 13%, respectively. The removal rates of BOD and T-N were higher than those for SS and T-P. The amounts of pollutant removal in Dongbokcheon CWs were higher in the order of forebay > wetlands > sedimentation pond for BOD, sedimentation pond > wetlands > forebay for SS, sedimentation pond > forebay > wetlands for T-N. The amount of T-P removal in wetlands was higher than forebay and sedimentation pond.

Investigation on Design Aspects of the Constructed Wetlands for Agricultural Reservoirs Treatment in Korea (농업용 저수지 수질개선을 위한 국내 인공습지 설계 및 시공실태 조사)

  • Kim, Youngchul;Choi, Hyeseon;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.189-200
    • /
    • 2021
  • To improve the water quality of agricultural reservoirs, constructed wetlands are applied in many places. These are technologies that establish ecosystems and important design factors include water depth distribution, inflow and outflow, water flow distribution, hydraulic residence time, water quality treatment efficiency, aspect ratio, and the distribution of open water and covered water surfaces. For high efficiency during the operation of a constructed wetland, the design needs to be optimized and this requires consideration of the different types and length of the intake dam as well as the type and connection of wetland cells. Therefore, this study was conducted to investigate and suggest factors that needs to be considered during the design and for efficient operation measures through field surveys of 23 constructed wetlands that have been established and operated in agricultural reservoirs. Results of the field investigation shows that several sites were being operated improperly due to the malfunctioning or failure of the water level sensors, sedimentation in the intake dam, and clogging of the mechanical sluice frames. In addition, it was found that as the length of the inlet channel increases, the ecological disconnection between the intake dam upstream and the wetland outlet downstream also increases and was identified as a problem. Most of the wetlands are composed of 2 to 5 cells which can result to poor hydraulic efficiency and difficulty in management if they are too large. Moreover, it was found that the flow through a small wetland can be inadequate when there are too many cells due to excessive amounts of headloss.

Effect of sewage flow on treatment efficiency of small scale wastewater treatment plant in rural community (농촌 지역에서 유입 유량이 소규모 하수처리장 처리 효율에 미치는 영향)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.267-274
    • /
    • 2016
  • Sewerage supply in rural community is the important for water quality protection of water system such as river, lake and wetland. And characteristic of small scale wastewater system that have wide range of inflow and concentration in sewage should be considered for stable operation of small scale wastewater treatment plant. In this research, characteristics of flow ratio (flow / designed flow), effect on treatment efficiency of small scale wastewater treatment plant and assessment of optimal flow ratio were conducted through analysis on operation result of 18 small scale wastewater treatment plant in Bong-hwa gun. As a result, flow ratio shows the higher value during summer. However pollutants concentration in sewage was shown the higher concentration during autumn and winter. Treatment of small scale wastewater treatment plant is increased when flow ratio increased, and nutrient treatment efficiency is more sensitive to change of flow ratio than organic compound and suspended solids. According to this research result, it need to be maintained flow ratio 0.8 over value for stable treatment efficiency of small scale wastewater treatment plant.

Clogging Potential in Constructed Vertical Flow Wetlands Employing Different Filter Materials for First-flush Urban Stormwater Runoff Treatment (도시 초기 강우유출수 처리를 위한 수직흐름습지에서 여재별 폐색 잠재성 분석)

  • Chen, Yaoping;Guerra, Heidi B.;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.235-242
    • /
    • 2018
  • The function of vertical subsurface flow wetlands can potentially be reduced with time due to clogging and are often assumed to be occurring when ponding and overflow is observed during rainfall. To investigate their clogging potential, three pilot-scale vertical subsurface flow (VSF) wetland systems were constructed employing woodchip, pumice, and volcanic gravel as main media. The systems received stormwater runoff from a highway bridge for seven months, after which the media were taken out and divided into layers to determine the amount and characteristics of the accumulated clogging matters. Findings revealed that the main clogging mechanism was the deposition of suspended solids. This is followed by the growth of biofilm in the media which is more evident in the wetland employing woodchip. Up to more than 30% of the clogging matter were found in the upper 20 cm of the media suggesting that this layer will need replacement once clogging occurs. Moreover, no signs of clogging were observed in all the wetlands during the operation period even though an estimation of at least 2 months without clogging was calculated. This was attributed to the intermittent loading mode of operation that gave way for the decomposition of organic matters during the resting period and potentially restored the pore volume.

A Study on the Removal of TNT(2,4,6-trinitrotoluene) using Marsh and Pond Type Microcosm Wetland Systems (Marsh와 Pond 형태의 Microcosm 습지 시스템을 이용한 TNT(2,4,6-trinitrotoluene)의 분해 연구)

  • Choi, Jong-Kyu;Kim, Se-Kyung;Kang, Ho-Jeong;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.198-205
    • /
    • 2005
  • This study was carried out to investigate the removal of TNT (2,4,6-trinitrotoluene) in the batch and continuous type microcosm systems consisting of marsh and pond. First, the batch reactor study showed that TNT (10 mg/L) was completely removed in the marsh and pond system within 20 days. The major reductive metabolites of TNT include 4-amino-2,6-dinitrotoluene (4-ADNT), 2-amino-4,6-dinitrotoluene (2-ADNT), 2,4-diamino-6-nitrotoluene (2,4-DANT), and 2,6-diamino-4-nitrotoluene (2,6-DANT). These metabolites concentration also decreased during further treatment. The continuous reactor systems combining marsh and pond indicated the similar pattern of TNT degadation and the metabolites production. Among the continuous reactor combinations, marsh-pond system showed more stable TNT removal and metabolites production. The toxicity of the effluent from the continuous system was examined by Microtox Assay using Vibrio fischeri. The result showed that the effluent toxicity was reduced below toxicity endpoint ($EC_{50}$) after continuous marsh pond system, indicating that metabolites of TNT are less toxic than TNT itself. Based on the results, TNT contaminated wastewater can be efficiently treated using marsh and pond wetland systems.

Non-Point Source Removal Efficiency Assessment Regarding Wetland Application in NaeSeongCheon Watershed (내성천 유역 내 인공습지 적용에 따른 비점오염물질 저감 효율 평가)

  • Bak, Sangjoon;Hong, Jiyeong;Yang, Dongseok;Lee, Seoro;Cho, Taewoo;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.394-394
    • /
    • 2021
  • 이상기후로 인한 강우패턴의 변화는 상류 유역에서의 토양 유실, 비점오염물질의 발생을 가속화시켜 하류 수계의 수질 및 수생태 건강성에 악영향을 미치고 있다. 낙동강 수계에 위치한 내성천 유역에서는 토양 침투율이 높은 토양군으로 구성되어 있어, 강우 시 유출량 및 유사유출량의 비율이 높아 비점오염 저감을 위한 대책 수립의 중요성이 지속적으로 제기되어 왔다. 특히, 내성천 유역 내 상류에 위치한 토일천 및 낙화암천 소유역에서는 다양한 영농활동과 대규모 및 소규모 축사의 영향으로 강우 시 다양한 비점오염물질이 많이 발생하고 있다. 하류 하천에서의 수질을 효율적으로 개선하기 위해서는 비점오염 발생량이 높은 상류 소유역을 대상으로 적절한 최적관리기법 선정과 이에 대한 정량적인 평가 방법이 필요하다. 최근 식생여과대, 침사지 등과 같은 다양한 최적관리기법 중 인공습지에 대한 점오염원 및 비점오염물질 처리 효과가 국내·외 여러 모니터링 연구를 통해 증명되었다. 그러나 아직까지 유역 내 다양한 토양 및 토지이용상태와 그리고 오염원 유출 특성을 고려하여 인공습지의 조성에 따른 유역단위에서의 수질 개선 효과를 정량적으로 분석한 연구는 미비한 실정이다. 이에 본 연구에서는 장기 강우-유출 유역단위 모형인 SWAT(Soil and Water Assessment Tool) 내 인공습지 모의가 가능하도록 모형 소스코드를 수정하였으며, 내성천 상류 소유역(토일천, 낙화암천)에 위치한 인공습지 조성 전후에 따른 유역 말단에서의 유사 및 비점오염물질의 저감 효율을 비교 분석하였다. 향후 본 연구의 결과는 내성천 유역을 대상으로 인공습지를 통한 유사 및 비점오염 저감 대책 수립 시 기초자료로 활용될 수 있을 것이라 사료된다.

  • PDF

Evaluation of Aquatic Ecological Efficiency in Juam Lake Eco-wetlands for Reducing Non-point Source Pollutants (비점오염물질 저감을 위한 주암호 생태습지의 수생태학적 효율 평가)

  • Lee, Sang-Gyu;Seo, Dong-Cheol;Choi, Ik-Won;Kang, Se-Won;Seo, Young-Jin;Lim, Byung-Jin;Lee, Jun-Bae;Kim, Sang-Don;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.317-324
    • /
    • 2012
  • To reduce non-point source pollutants in Juam Lake eco-wetlands, purification efficiencies of pollutants were investigated at three different systems. The constructed wetlands (CWs) consisted of A system, B system and C system. A system consisted of $1^{st}$ free water surface (FWS) CW, $2^{nd}$ FWS CW, $3^{rd}$ FWS CW, $4^{th}$ subsurface flow (SSF) CW and $5^{th}$ SSF CW. B system consisted of $1^{st}$ FWS CW, $2^{nd}$ FWS CW, $3^{rd}$ FWS CW, $4^{th}$ FWS CW and $5^{th}$ SSF CW. C system consisted of $1^{st}$ FWS CW, $2^{nd}$ FWS CW, $3^{rd}$ FWS CW, $4^{th}$ FWS CW and $5^{th}$ SSF CW. The concentrations of BOD, COD, SS, T-N and T-P in inflow ranged 0.20 ~ 0.91, 1.24 ~ 8.00, 0.60 ~ 8.60, 0.04 ~ 2.50 and $0.001{\sim}0.685mg\;L^{-1}$ from March to October in 2011, respectively. Removal rates of BOD, SS, T-N and T-P were high in Autumn, Spring, Spring and Summer, respectively. In A system, $1^{st}$ FWS CW, $2^{nd}$ FWS CW and $3^{rd}$ FWS CW were dominated by Leersia oryzoides. In B system, $1^{st}$ FWS CW, $3^{rd}$ FWS CW and $4^{th}$ FWS CW were dominated by Leersia oryzoides. In C system, $2^{nd}$ FWS CW and $3^{rd}$ FWS CW were dominated by Nymphaea teragona.

Water Quality Improvement by Natural Wetland (습지에 의한 수질개선 효과)

  • Kim, Bom-Chul;Kim, Ho-Sub;Jun, Man-Sig;Hwang, Gil-Son
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.295-303
    • /
    • 2000
  • The water clarification efficiency was examined in a shallow wetland where dense vegetation was formed naturally in an abandoned paddy field. And, also two enclosure experiments were carried out to measure the effects of materials exchange between sediment and the overlying water with the existence of vegetation and accumulated litter. The hydraulic retention time of wetland was regulated in 1.2 day. The removal rates of SS (56%) and $NO_3-N$ (61%) were high, considering its short retention time. However, removal efficiencies of VSS (28%), COD (14%), DOC (1%),and TP (0.2%) were relatively lower. This low removal efficiencies were thought to be due to the release of dissolved form of organic matter and phosphorus from the sediment. Most of constituents except nitrate were higher in the enclosure at the beginning of enclosure installation than that of the outflowing water from wetland. And then, it has fluctuated and decreased with time. The wetland was in equilibrium state of settling, accumulation of organic debris, and regeneration of dissolved material from sediment. So ultimately high primary production by dense vegetation in the wetland may be the reason of unfavorable or low treatment efficiency of wetland after many years of operation for wastewater treatment. However, the water quality of effluent from the wetland showed smaller variation and better condition than that of inflow, especially during storm events. It can be concluded that this wetland is suitable for the improvement of water quality from nonpoint sources.

  • PDF

Evaluation of Removal Efficiency of Pollutants in Constructed Wetlands for Treating Greenhouse Wastewater Under Different Filter Media, Configuration Methods and Agricultural Water Loading (시설하우스 농업배수 처리를 위한 인공습지에서 여재종류, 조합방법 및 부하량에 따른 오염물질 정화효율 평가)

  • Lee, Dong-Jin;Park, Jong-Hwan;Kim, Seong-Heon;Yoon, Chan-Woong;Cho, Ju-Sik;Lee, Seong-Tae;Heo, Jong-Soo;Seo, Dong-Cheol
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.1
    • /
    • pp.13-23
    • /
    • 2014
  • To obtain optimum filter media, configuration method and greenhouse wastewater loading in small-scale constructed wetlands (CWs) for treating greenhouse wastewater, the apparatuses were constructed with 4 kinds of combined systems such as vertical flow (VH)-Horizontal flow (HF), HF-VH, HF-VF-HF, VF-HF-HF CWs. The efficiencies of pollutants in greenhouse wastewater were investigated in various CWs under different filter media, configuration methods and agricultural water loading. Removal rates of pollutants under different filter media were in the other of coarse sand>broken stone${\fallingdotseq}$calcite${\fallingdotseq}$mixed filter media for COD, broken stone>mixed filter media>coarse sand>calcite for T-N, and calcite>mixed filter media>broken stone>coarse sand for T-P. The removal rates of pollutants in HF-VH-HF CWs at different configuration methods were higher than those in other configuration methods. The removal rates of pollutants were higher in the order of $150L\;m^{-2}day^{-1}{\fallingdotseq}300L\;m^{-2}day^{-1}$ > $600L\;m^{-2}day^{-1}$ under different greenhouse wastewater loading. Therefore, optimum configuration method was HF-VH-HF CWs, the optimum filter media was mixed filter media (coarse sand : broken stone : calcite=1 : 1 : 1), and the optimum greenhouse wastewater loading was $300L\;m^{-2}day^{-1}$ in HF-VH-HF CWs.