• Title/Summary/Keyword: 채널 모델링

Search Result 506, Processing Time 0.02 seconds

A generation method of ASF mapping by the predicted ASF with the measured one in the Yeongil Bay (ASF 예측모델과 실측치를 이용한 영일만 해상 ASF 맵 생성기법)

  • Hwang, Sang-Wook;Shin, Mi Young;Choi, Yun Sub;Yu, Donghui;Park, Chansik;Yang, Sung-Hoon;Lee, Chang-Bok;Lee, Sang Jeong
    • Journal of Navigation and Port Research
    • /
    • v.37 no.4
    • /
    • pp.375-381
    • /
    • 2013
  • In order to establish eLoran system it needs the betterment of a receiver and a transmitter, the add of data channel to loran pulse for loran system information and the differential Loran for compensating Loran-c signal. Precise ASF database map is essential if the Loran delivers the high absolute accuracy of navigation demanded at maritime harbor entrance. In this study we developed the ASF mapping method using predicted ASFs compensated by the measured ASFs for maritime in the harbor. Actual ASF is measured by the legacy Loran signal transmitted from Pohang station in the GRI 9930 chain. We measured absolute propagation delay between the Pohang transmitting station and the measurement points by comparing with the cesium clock for the calculation of the ASFs. Monteath model was used for the irregular terrain along the propagation path in the Yeongil Bay. We measured the actual ASFs at the 12 measurement points over the Yeongil Bay. In our ASF-mapping method we estimated that the each offsets between the predicted and the measured ASFs at the 12 spaced points in the Yeongil. We obtained the ASF map by adjusting the predicted ASF results to fit the measured ASFs over Yeungil bay.

Damage Estimation Method for Jacket-type Support Structure of Offshore Wind Turbine (재킷식 해상풍력터빈 지지구조물의 손상추정기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.64-71
    • /
    • 2017
  • A damage estimation method is presented for jacket-type support structure of offshore wind turbine using a change of modal properties due to damage and committee of neural networks for effective structural health monitoring. For more practical monitoring, it is necessary to monitor the critical and prospective damaged members with a limited number of measurement locations. That is, many data channels and sensors are needed to identify all the members appropriately because the jacket-type support structure has many members. This is inappropriate considering economical and practical health monitoring. Therefore, intensive damage estimation for the critical members using a limited number of the measurement locations is carried out in this study. An analytical model for a jacket-type support structure which can be applied for a 5 MW offshore wind turbine is established, and a training pattern is generated using the numerical simulations. Twenty damage cases are estimated using the proposed method. The identified damage locations and severities agree reasonably well with the exact values and the accuracy of the estimation can be improved by applying the committee of neural networks. A verification experiment is carried out, and the damage arising in 3 damage cases is reasonably identified.

Geophysical characteristics of seamounts around Dok Island (동해 독도주변 해산의 지구물리학적 특성)

  • 강무희;한현철;윤혜수;이치원
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.4
    • /
    • pp.267-285
    • /
    • 2002
  • Dok Island, a Pliocene volcano, lies in the southwestern part of the East Sea. Most the work to date have focused primarily on the petrolography of the island, and as a result, the morphological characteristics and internal structure of the volcanic edifices of the Dok Island remain poorly understood. To provide better constraints on these features, bathymetric data with multibeam echo sounder, 32-channel seismic and 3D gravity modeling were used in this study. Three positive topographic highs are present in the study area, and these highs satisfy the seamount criteria. They are named as Dokdo, Tamhae, and Donghae seamounts. 32-channel seismic survey was conducted to investigate the sediment thickness of the area, which shows that there are no sediments near the summit of seamounts. Away from the seamounts, however, sediment becomes thick(>2000 m) toward the western part of the study area, and sediments in the northern and southern parts are about 1000 m thick. Free-Air gravity anomalies in this study generally follow the bathymetric feature with less than -20 mGal at the western part, but increase towards the seamounts. In the summit of the Dokdo Seamount, anomalies reach over 120 mGal, and in Tamhae and Donghae seamounts, the peak anomaly shows 90 and 70 mGals, respectively. All seamounts have an isolated volcanic conduit in their centre and show regional compensation root with 0.5~1.5 km thickness. The flat-topped summit of the seamounts is probably caused by wave truncation, indicating the sea level at the time of formation of the flat-topped geometry. Comparison between the present-day sea level and subsidence level during the opening of the East Sea suggests that the seamounts in the study area have subsided by 200~300 m after the formation. Furthermore, it implies that the seamounts formed over 12~10 Ma.

A Tool Box to Evaluate the Phased Array Coil Performance Using Retrospective 3D Coil Modeling (3차원 코일 모델링을 통해 위상배열코일 성능을 평가하기 위한 프로그램)

  • Perez, Marlon;Hernandez, Daniel;Michel, Eric;Cho, Min Hyoung;Lee, Soo Yeol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.2
    • /
    • pp.107-119
    • /
    • 2014
  • Purpose : To efficiently evaluate phased array coil performance using a software tool box with which we can make visual comparison of the sensitivity of every coil element between the real experiment and EM simulation. Materials and Methods: We have developed a $C^{{+}{+}}$- and MATLAB-based software tool called Phased Array Coil Evaluator (PACE). PACE has the following functions: Building 3D models of the coil elements, importing the FDTD simulation results, and visualizing the coil sensitivity of each coil element on the ordinary Cartesian coordinate and the relative coil position coordinate. To build a 3D model of the phased array coil, we used an electromagnetic 3D tracker in a stylus form. After making the 3D model, we imported the 3D model into the FDTD electromagnetic field simulation tool. Results: An accurate comparison between the coil sensitivity simulation and real experiment on the tool box platform has been made through fine matching of the simulation and real experiment with aids of the 3D tracker. In the simulation and experiment, we used a 36-channel helmet-style phased array coil. At the 3D MRI data acquisition using the spoiled gradient echo sequence, we used the uniform cylindrical phantom that had the same geometry as the one in the FDTD simulation. In the tool box, we can conveniently choose the coil element of interest and we can compare the coil sensitivities element-by-element of the phased array coil. Conclusion: We expect the tool box can be greatly used for developing phased array coils of new geometry or for periodic maintenance of phased array coils in a more accurate and consistent manner.

Video Camera Characterization with White Balance (기준 백색 선택에 따른 비디오 카메라의 전달 특성)

  • 김은수;박종선;장수욱;한찬호;송규익
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.2
    • /
    • pp.23-34
    • /
    • 2004
  • Video camera can be a useful tool to capture images for use in colorimeter. However the RGB signals generated by different video camera are not equal for the same scene. The video camera for use in colorimeter is characterized based on the CIE standard colorimetric observer. One method of deriving a colorimetric characterization matrix between camera RGB output signals and CIE XYZ tristimulus values is least squares polynomial modeling. However it needs tedious experiments to obtain camera transfer matrix under various white balance point for the same camera. In this paper, a new method to obtain camera transfer matrix under different white balance by using 3${\times}$3 camera transfer matrix under a certain white balance point is proposed. According to the proposed method camera transfer matrix under any other white balance could be obtained by using colorimetric coordinates of phosphor derived from 3${\times}$3 linear transfer matrix under the certain white balance point. In experimental results, it is demonstrated that proposed method allow 3${\times}$3 linear transfer matrix under any other white balance having a reasonable degree of accuracy compared with the transfer matrix obtained by experiments.

Geophysical Evidence Indicating the Presence of Gas Hydrates in a Mud Volcano(MV420) in the Canadian Beaufort Sea (캐나다 보퍼트해 진흙화산(MV420) 내 가스하이드레이트 부존을 지시하는 지구물리학적 증거)

  • Yeonjin Choi;Young-Gyun Kim;Seung-Goo Kang;Young Keun Jin;Jong Kuk Hong;Wookeen Chung;Sung-Ryul Shin
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.1
    • /
    • pp.18-30
    • /
    • 2023
  • Submarine mud volcanos are topographic features that resemble volcanoes, and are formed due to eruptions of fluidized or gasified sediment material. They have gained attention as a source of subsurface heat, sediment, or hydrocarbons supplied to the surface. In the continental slope of the Canadian Beaufort Sea, mud volcano exists at various water depths. The MV420, is an active mud volcano erupting at a water depth of 420 meters, and it has been the subject of extensive study. The Korea Polar Research Institute(KOPRI) collected high-resolution seismic data and heat flow data around the caldera of the mud volcano. By analyzing the multi-channel seismic data, we confirmed the reverse-polarity reflector assumed by a gas hydrate-related bottom simulating reflector(BSR). To further elucidate the relationship between the BSR and gas hydrates, as well as the thermal structure of the mud volcano, a numerical geothermal model was developed based on the steady-state heat equation. Using this model, we estimated the base of the gas hydrate stability zone and found that the BSR depth estimated by multi-channel seismic data and the bottom of the gas hydrate stability zone were in good agreement., This suggests the presence of gas hydrates, and it was determined that the depth of the gas hydrate was likely up to 50 m, depending on the distance from the mud conduit. Thus, this depth estimate slightly differs from previous studies.