• Title/Summary/Keyword: 채널관리

Search Result 605, Processing Time 0.024 seconds

A Study on the Field Data Applicability of Seismic Data Processing using Open-source Software (Madagascar) (오픈-소스 자료처리 기술개발 소프트웨어(Madagascar)를 이용한 탄성파 현장자료 전산처리 적용성 연구)

  • Son, Woohyun;Kim, Byoung-yeop
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.171-182
    • /
    • 2018
  • We performed the seismic field data processing using an open-source software (Madagascar) to verify if it is applicable to processing of field data, which has low signal-to-noise ratio and high uncertainties in velocities. The Madagascar, based on Python, is usually supposed to be better in the development of processing technologies due to its capabilities of multidimensional data analysis and reproducibility. However, this open-source software has not been widely used so far for field data processing because of complicated interfaces and data structure system. To verify the effectiveness of the Madagascar software on field data, we applied it to a typical seismic data processing flow including data loading, geometry build-up, F-K filter, predictive deconvolution, velocity analysis, normal moveout correction, stack, and migration. The field data for the test were acquired in Gunsan Basin, Yellow Sea using a streamer consisting of 480 channels and 4 arrays of air-guns. The results at all processing step are compared with those processed with Landmark's ProMAX (SeisSpace R5000) which is a commercial processing software. Madagascar shows relatively high efficiencies in data IO and management as well as reproducibility. Additionally, it shows quick and exact calculations in some automated procedures such as stacking velocity analysis. There were no remarkable differences in the results after applying the signal enhancement flows of both software. For the deeper part of the substructure image, however, the commercial software shows better results than the open-source software. This is simply because the commercial software has various flows for de-multiple and provides interactive processing environments for delicate processing works compared to Madagascar. Considering that many researchers around the world are developing various data processing algorithms for Madagascar, we can expect that the open-source software such as Madagascar can be widely used for commercial-level processing with the strength of expandability, cost effectiveness and reproducibility.

Financial Fraud Detection using Text Mining Analysis against Municipal Cybercriminality (지자체 사이버 공간 안전을 위한 금융사기 탐지 텍스트 마이닝 방법)

  • Choi, Sukjae;Lee, Jungwon;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.119-138
    • /
    • 2017
  • Recently, SNS has become an important channel for marketing as well as personal communication. However, cybercrime has also evolved with the development of information and communication technology, and illegal advertising is distributed to SNS in large quantity. As a result, personal information is lost and even monetary damages occur more frequently. In this study, we propose a method to analyze which sentences and documents, which have been sent to the SNS, are related to financial fraud. First of all, as a conceptual framework, we developed a matrix of conceptual characteristics of cybercriminality on SNS and emergency management. We also suggested emergency management process which consists of Pre-Cybercriminality (e.g. risk identification) and Post-Cybercriminality steps. Among those we focused on risk identification in this paper. The main process consists of data collection, preprocessing and analysis. First, we selected two words 'daechul(loan)' and 'sachae(private loan)' as seed words and collected data with this word from SNS such as twitter. The collected data are given to the two researchers to decide whether they are related to the cybercriminality, particularly financial fraud, or not. Then we selected some of them as keywords if the vocabularies are related to the nominals and symbols. With the selected keywords, we searched and collected data from web materials such as twitter, news, blog, and more than 820,000 articles collected. The collected articles were refined through preprocessing and made into learning data. The preprocessing process is divided into performing morphological analysis step, removing stop words step, and selecting valid part-of-speech step. In the morphological analysis step, a complex sentence is transformed into some morpheme units to enable mechanical analysis. In the removing stop words step, non-lexical elements such as numbers, punctuation marks, and double spaces are removed from the text. In the step of selecting valid part-of-speech, only two kinds of nouns and symbols are considered. Since nouns could refer to things, the intent of message is expressed better than the other part-of-speech. Moreover, the more illegal the text is, the more frequently symbols are used. The selected data is given 'legal' or 'illegal'. To make the selected data as learning data through the preprocessing process, it is necessary to classify whether each data is legitimate or not. The processed data is then converted into Corpus type and Document-Term Matrix. Finally, the two types of 'legal' and 'illegal' files were mixed and randomly divided into learning data set and test data set. In this study, we set the learning data as 70% and the test data as 30%. SVM was used as the discrimination algorithm. Since SVM requires gamma and cost values as the main parameters, we set gamma as 0.5 and cost as 10, based on the optimal value function. The cost is set higher than general cases. To show the feasibility of the idea proposed in this paper, we compared the proposed method with MLE (Maximum Likelihood Estimation), Term Frequency, and Collective Intelligence method. Overall accuracy and was used as the metric. As a result, the overall accuracy of the proposed method was 92.41% of illegal loan advertisement and 77.75% of illegal visit sales, which is apparently superior to that of the Term Frequency, MLE, etc. Hence, the result suggests that the proposed method is valid and usable practically. In this paper, we propose a framework for crisis management caused by abnormalities of unstructured data sources such as SNS. We hope this study will contribute to the academia by identifying what to consider when applying the SVM-like discrimination algorithm to text analysis. Moreover, the study will also contribute to the practitioners in the field of brand management and opinion mining.

Motives for Writing After-Purchase Consumer Reviews in Online Stores and Classification of Online Store Shoppers (인터넷 점포에서의 구매후기 작성 동기 및 점포 고객 유형화)

  • Hong, Hee-Sook;Ryu, Sung-Min
    • Journal of Distribution Research
    • /
    • v.17 no.3
    • /
    • pp.25-57
    • /
    • 2012
  • This study identified motives for writing apparel product reviews in online stores, and determined what motives increase the behavior of writing reviews. It also classified store customers based on the type of writing motives, and clarified the characteristics of internet purchase behavior and of a demographic profile. Data were collected from 252 females aged 20s' and 30s' who have experience of reading and writing reviews on online shopping. The five types of writing motives were altruistic information sharing, remedying of a grievance and vengeance, economic incentives, helping new product development, and the expression of satisfaction feelings. Among five motives, altruistic information sharing, economic incentives, and helping new product development stimulate writing reviews. Store customers who write reviews were classified into three groups based on their writing motive types: Other consumer advocates(29.8%), self-interested shoppers(40.5%) and shoppers with moderate motives(29.8%). There were significant differences among three groups in writing behavior (the frequency of writing reviews, writing intent of reviews, duration of writing reviews, and frequency of online shopping) and age. Based on results, managerial implications were suggested. Long Abstract : The purpose of present study is to identify the types of writing motives on online shopping, and to clarify the motives affecting the behavior of writing reviews. This study also classifies online shoppers based on the motive types, and identifies the characteristics of the classified groups in terms of writing behavior, frequency of online shopping, and demographics. Use and Gratification Theory was adopted in this study. Qualitative research (focus group interview) and quantitative research were used. Korean women(20 to 39 years old) who reported experience with purchasing clothing online, and reading and writing reviews were selected as samples(n=252). Most of the respondents were relatively young (20-34yrs., 86.1%,), single (61.1%), employed(61.1%) and residents living in big cities(50.9%). About 69.8% of respondents read and 40.5% write apparel reviews frequently or very frequently. 24.6% of the respondents indicated an "average" in their writing frequency. Based on the qualitative result of focus group interviews and previous studies on motives for online community activities, measurement items of motives for writing after-purchase reviews were developed. All items were used a five-point Likert scale with endpoints 1 (strongly disagree) and 5 (strongly agree). The degree of writing behavior was measured by items concerning experience of writing reviews, frequency of writing reviews, amount of writing reviews, and intention of writing reviews. A five-point scale(strongly disagree-strongly agree) was employed. SPSS 18.0 was used for exploratory factor analysis, K-means cluster analysis, one-way ANOVA(Scheffe test) and ${\chi}^2$-test. Confirmatory factor analysis and path model analysis were conducted by AMOS 18.0. By conducting principal components factor analysis (varimax rotation, extracting factors with eigenvalues above 1.0) on the measurement items, five factors were identified: Altruistic information sharing, remedying of a grievance and vengeance, economic incentives, helping new product development, and expression of satisfaction feelings(see Table 1). The measurement model including these final items was analyzed by confirmatory factor analysis. The measurement model had good fit indices(GFI=.918, AGFI=.884, RMR=.070, RMSEA=.054, TLI=.941) except for the probability value associated with the ${\chi}^2$ test(${\chi}^2$=189.078, df=109, p=.00). Convergent validities of all variables were confirmed using composite reliability. All SMC values were found to be lower than AVEs confirming discriminant validity. The path model's goodness-of-fit was greater than the recommended limits based on several indices(GFI=.905, AGFI=.872, RMR=.070, RMSEA=.052, TLI=.935; ${\chi}^2$=260.433, df=155, p=.00). Table 2 shows that motives of altruistic information sharing, economic incentives and helping new product development significantly increased the degree of writing product reviews of online shopping. In particular, the effect of altruistic information sharing and pursuit of economic incentives on the behavior of writing reviews were larger than the effect of helping new product development. As shown in table 3, online store shoppers were classified into three groups: Other consumer advocates (29.8%), self-interested shoppers (40.5%), and moderate shoppers (29.8%). There were significant differences among the three groups in the degree of writing reviews (experience of writing reviews, frequency of writing reviews, amount of writing reviews, intention of writing reviews, and duration of writing reviews, frequency of online shopping) and age. For five aspects of writing behavior, the group of other consumer advocates who is mainly comprised of 20s had higher scores than the other two groups. There were not any significant differences between self-interested group and moderate group regarding writing behavior and demographics.

  • PDF

Structural features and Diffusion Patterns of Gartner Hype Cycle for Artificial Intelligence using Social Network analysis (인공지능 기술에 관한 가트너 하이프사이클의 네트워크 집단구조 특성 및 확산패턴에 관한 연구)

  • Shin, Sunah;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.107-129
    • /
    • 2022
  • It is important to preempt new technology because the technology competition is getting much tougher. Stakeholders conduct exploration activities continuously for new technology preoccupancy at the right time. Gartner's Hype Cycle has significant implications for stakeholders. The Hype Cycle is a expectation graph for new technologies which is combining the technology life cycle (S-curve) with the Hype Level. Stakeholders such as R&D investor, CTO(Chef of Technology Officer) and technical personnel are very interested in Gartner's Hype Cycle for new technologies. Because high expectation for new technologies can bring opportunities to maintain investment by securing the legitimacy of R&D investment. However, contrary to the high interest of the industry, the preceding researches faced with limitations aspect of empirical method and source data(news, academic papers, search traffic, patent etc.). In this study, we focused on two research questions. The first research question was 'Is there a difference in the characteristics of the network structure at each stage of the hype cycle?'. To confirm the first research question, the structural characteristics of each stage were confirmed through the component cohesion size. The second research question is 'Is there a pattern of diffusion at each stage of the hype cycle?'. This research question was to be solved through centralization index and network density. The centralization index is a concept of variance, and a higher centralization index means that a small number of nodes are centered in the network. Concentration of a small number of nodes means a star network structure. In the network structure, the star network structure is a centralized structure and shows better diffusion performance than a decentralized network (circle structure). Because the nodes which are the center of information transfer can judge useful information and deliver it to other nodes the fastest. So we confirmed the out-degree centralization index and in-degree centralization index for each stage. For this purpose, we confirmed the structural features of the community and the expectation diffusion patterns using Social Network Serice(SNS) data in 'Gartner Hype Cycle for Artificial Intelligence, 2021'. Twitter data for 30 technologies (excluding four technologies) listed in 'Gartner Hype Cycle for Artificial Intelligence, 2021' were analyzed. Analysis was performed using R program (4.1.1 ver) and Cyram Netminer. From October 31, 2021 to November 9, 2021, 6,766 tweets were searched through the Twitter API, and converting the relationship user's tweet(Source) and user's retweets (Target). As a result, 4,124 edgelists were analyzed. As a reult of the study, we confirmed the structural features and diffusion patterns through analyze the component cohesion size and degree centralization and density. Through this study, we confirmed that the groups of each stage increased number of components as time passed and the density decreased. Also 'Innovation Trigger' which is a group interested in new technologies as a early adopter in the innovation diffusion theory had high out-degree centralization index and the others had higher in-degree centralization index than out-degree. It can be inferred that 'Innovation Trigger' group has the biggest influence, and the diffusion will gradually slow down from the subsequent groups. In this study, network analysis was conducted using social network service data unlike methods of the precedent researches. This is significant in that it provided an idea to expand the method of analysis when analyzing Gartner's hype cycle in the future. In addition, the fact that the innovation diffusion theory was applied to the Gartner's hype cycle's stage in artificial intelligence can be evaluated positively because the Gartner hype cycle has been repeatedly discussed as a theoretical weakness. Also it is expected that this study will provide a new perspective on decision-making on technology investment to stakeholdes.

A Study on Perceived Quality affecting the Service Personal Value in the On-off line Channel - Focusing on the moderate effect of the need for cognition - (온.오프라인 채널에서 지각된 품질이 서비스의 개인가치에 미치는 영향에 관한 연구 -인지욕구의 조정효과를 중심으로-)

  • Sung, Hyung-Suk
    • Journal of Distribution Research
    • /
    • v.15 no.3
    • /
    • pp.111-137
    • /
    • 2010
  • The basic purpose of this study is to investigate perceived quality and service personal value affecting the result of long-term relationship between service buyers and suppliers. This research presented a constructive model(perceived quality affecting the service personal value and the moderate effect of NFC) in the on off line and then propose the research model base on prior researches and studies about relationships among components of service. Data were gathered from respondents who visit at the education service market. For this study, Data were analyzed by AMOS 7.0. We integrate the literature on services marketing with researches on personal values and perceived quality. The SERPVAL scale presented here allows for the creation of a common ground for assessing service personal values, giving a clear understanding of the key value dimensions behind service choice and usage. It will lead to a focus of future research in services marketing, extending knowledge in the field and stimulating further empirical research on service personal values. At the managerial level, as a tool the SERPVAL scale should allow practitioners to evaluate and improve the value of a service, and consequently, to define strategies and actions to address services for customers based on their fundamental personal values. Through qualitative and empirical research, we find that the service quality construct conforms to the structure of a second-order factor model that ties service quality perceptions to distinct and actionable dimensions: outcome, interaction, and environmental quality. In turn, each has two subdimensions that define the basis of service quality perceptions. The authors further suggest that for each of these subdimensions to contribute to improved service quality perceptions, the quality received by consumers must be perceived to be reliable, responsive, and empathetic. Although the service personal value may be found in researches that explore individual values and their consequences for consumer behavior, there is no established operationalization of a SERPVAL scale. The inexistence of an established scale, duly adapted in order to understand and analyze personal values behind services usage, exposes the need of a measurement scale with such a purpose. This need has to be rooted, however, in a conceptualization of the construct being scaled. Service personal values can be defined as a customer's overall assessment of the use of a service based on the perception of what is achieved in terms of his own personal values. As consumer behaviors serve to show an individual's values, the use of a service can also be a way to fulfill and demonstrate consumers'personal values. In this sense, a service can provide more to the customer than its concrete and abstract attributes at both the attribute and the quality levels, and more than its functional consequences at the value level. Both values and services literatures agree, that personal value is the highest-level concept, followed by instrumental values, attitudes and finally by product attributes. Purchasing behaviors are agreed to be the end result of these concepts' interaction, with personal values taking a major role in the final decision process. From both consumers' and practitioners' perspectives, values are extremely relevant, as they are desirable goals that serve as guiding principles in people's lives. While building on previous research, we propose to assess service personal values through three broad groups of individual dimensions; at the self-oriented level, we use (1) service value to peaceful life (SVPL) and, at the social-oriented level, we use (2) service value to social recognition (SVSR), and (3) service value to social integration (SVSI). Service value to peaceful life is our first dimension. This dimension emerged as a combination of values coming from the RVS scale, a scale built specifically to assess general individual values. If a service promotes a pleasurable life, brings or improves tranquility, safety and harmony, then its user recognizes the value of this service. Generally, this service can improve the user's pleasure of life, since it protects or defends the consumer from threats to life or pressures on it. While building upon both the LOV scale, a scale built specifically to assess consumer values, and the RVS scale for individual values, we develop the other two dimensions: SVSR and SVSI. The roles of social recognition and social integration to improve service personal value have been seriously neglected. Social recognition derives its outcome utility from its predictive utility. When applying this underlying belief to our second dimension, SVSR, we assume that people use a service while taking into consideration the content of what is delivered. Individuals consider whether the service aids in gaining respect from others, social recognition and status, as well as whether it allows achieving a more fulfilled and stimulating life, which might then be revealed to others. People also tend to engage in behavior that receives social recognition and to avoid behavior that leads to social disapproval, and this contributes to an individual's social integration. This leads us to the third dimension, SVSI, which is based on the fact that if the consumer perceives that a service strengthens friendships, provides the possibility of becoming more integrated in the group, or promotes better relationships at the social, professional or family levels, then the service will contribute to social integration, and naturally the individual will recognize personal value in the service. Most of the research in business values deals with individual values. However, to our knowledge, no study has dealt with assessing overall personal values as well as their dimensions in a service context. Our final results show that the scales adapted from the Schwartz list were excluded. A possible explanation is that although Schwartz builds on Rokeach work in order to explore individual values, its dimensions might be especially focused on analyzing societal values. As we are looking for individual dimensions, this might explain why the values inspired by the Schwartz list were excluded from the model. The hierarchical structure of the final scale presented in this paper also presents theoretical implications. Although we cannot claim to definitively capture the dimensions of service personal values, we believe that we come close to capturing these overall evaluations because the second-order factor extracts the underlying commonality among dimensions. In addition to obtaining respondents' evaluations of the dimensions, the second-order factor model captures the common variance among these dimensions, reflecting the respondents' overall assessment of service personal values. Towards this fact, we expect that the service personal values conceptualization and measurement scale presented here contributes to both business values literature and the service marketing field, allowing for the delineation of strategies for adding value to services. This new scale also presents managerial implications. The SERPVAL dimensions give some guidance on how to better pursue a highly service-oriented business strategy. Indeed, the SERPVAL scale can be used for benchmarking purposes, as this scale can be used to identify whether or not a firms' marketing strategies are consistent with consumers' expectations. Managerial assessment of the personal values of a service might be extremely important because it allows managers to better understand what customers want or value. Thus, this scale allows us to identify what services are really valuable to the final consumer; providing knowledge for making choices regarding which services to include. Traditional approaches have focused their attention on service attributes (as quality) and service consequences(as service value), but personal values may be an important set of variables to be considered in understanding what attracts consumers to a certain service. By using the SERPVAL scale to assess the personal values associated with a services usage, managers may better understand the reasons behind services' usage, so that they may handle them more efficiently. While testing nomological validity, our empirical findings demonstrate that the three SERPVAL dimensions are positively and significantly associated with satisfaction. Additionally, while service value to social integration is related only with loyalty, service value to peaceful life is associated with both loyalty and repurchase intent. It is also interesting and surprising that service value to social recognition appears not to be significantly linked with loyalty and repurchase intent. A possible explanation is that no mobile service provider has yet emerged in the market as a luxury provider. All of the Portuguese providers are still trying to capture market share by means of low-end pricing. This research has implications for consumers as well. As more companies seek to build relationships with their customers, consumers are easily able to examine whether these relationships provide real value or not to their own lives. The selection of a strategy for a particular service depends on its customers' personal values. Being highly customer-oriented means having a strong commitment to customers, trying to create customer value and understanding customer needs. Enhancing service distinctiveness in order to provide a peaceful life, increase social recognition and gain a better social integration are all possible strategies that companies may pursue, but the one to pursue depends on the outstanding personal values held by the service customers. Data were gathered from 284 respondents in the korean discount store and online shopping mall market. This research proposed 3 hypotheses on 6 latent variables and tested through structural equation modeling. 6 alternative measurements were compared through statistical significance test of the 6 paths of research model and the overall fitting level of structural equation model. and the result was successful. and Perceived quality more positively influences service personal value when NFC is high than when no NFC is low in the off-line market. The results of the study indicate that service quality is properly modeled as an antecedent of service personal value. We consider the research and managerial implications of the study and its limitations. In sum, by knowing the dimensions a consumer takes into account when choosing a service, a better understanding of purchasing behaviors may be realized, guiding managers toward customers expectations. By defining strategies and actions that address potential problems with the service personal values, managers might ultimately influence their firm's performance. we expect to contribute to both business values and service marketing literatures through the development of the service personal value. At a time when marketing researchers are challenged to provide research with practical implications, it is also believed that this framework may be used by managers to pursue service-oriented business strategies while taking into consideration what customers value.

  • PDF