• Title/Summary/Keyword: 찰흔

Search Result 3, Processing Time 0.025 seconds

The feature of geomorphology and a factor of retreat in Franz Josef Glacier (프랜츠 요셉 빙하의 지형적 특성과 빙하 후퇴의 원인)

  • 심인선
    • Journal of the Speleological Society of Korea
    • /
    • no.63
    • /
    • pp.61-79
    • /
    • 2004
  • The Franz Josef Glacier is sited 250 m above sea level. The moisture westerly winds from Tasman Sea and the feature of the alp geomorphology have made the Franz Josef Slatier. That is why the Franz Josef Slatier is. The Franz Josef Slatier has receded during the past century in response to global warming since the end of the Little ice Age in the 1890s. Even between 2002 and 2003, the Franz Josef Glacier is confirmed retreat ins. This is confirmed by climate factors. The expressing of the Franz Josef Slatier retreating in 2003 which is advanced air temperature and amount of precipitation in 1998 than compared another years. There are lots of metamorphic rock as known biotite, schist, greywack and the Alpine Fault is passing near the Franz Josef Glacier. The grooved and scratching trend surface the rock are observed as the evidence of retreating glacier left.

A Preliminary Geomorphic Overview of Late Quaternary Glacier Fluctuations in the South Shetland Islands, West Antarctica (서남극 남쉐틀랜드 군도의 제4기 후기 빙하 활동의 지형학적 고찰)

  • Lim, Hyoun-Soo;Yoon, Ho-Il;Lee, Yong-Il;Kim, Yea-Dong;Owen Lewis A.;Seong, Yeong-Bae
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.5 s.116
    • /
    • pp.513-526
    • /
    • 2006
  • The timing and extent of glaciations during the Late Quaternary in the South Shetland Islands, West Antarctica were defined using field mapping, geomorphic analysis and radiocarbon dating. Landforms of glacial erosion and deposition, in particular subglacial meltwater channel erosion, suggest that at least three glaciations occurred during the late Quaternary within the study region. During the global LGM, glacial troughs (such as Maxwell Bay and Admiralty Bay) were overdeepened by an ice stream moving south from $an\sim1000m-thick$ ice cap centered on the present-day continental shelf to the north. This ice was responsible for the subglacial meltwater channel erosion, and glacial polished and striated bedrock on the Fildes Peninsula. The recent local glaciations occurred about 2,000 years ago and during Little Ice Age (LIA). During these glaciations, glaciers were less extensive than the previous one and less erosive as a cold-based ice

Some Evidences for Glacial Landforms on the Baekdusan and Its Implications to Quaternary Volcanic Eruptions (백두산 빙하지형의 존재 가능성과 제4기 화산활동과의 관계)

  • Lee, Sung-Ee;Seong, Yeong-Bae;Kang, Hee-Cheol;Choi, Kwang-Hee
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.2
    • /
    • pp.159-178
    • /
    • 2012
  • Since the suggestions on the paleo-glacial landforms in and around the northern high mountains of Korean Peninsula by some western and Japanese scientists in the early 1900s, the likelihood of the glacier existence in the Baekdusan over the Quaternary glacial period has been had in common among most of the Korean geomorphologists. In the other meaning, some have cast doubt on the likelihood the paleo-glacier in the Baekdusan because there has been no unequivocal evidences for the glacier such as striation, moraines, except morphologic characteristic landforms possibly related to glacier. Here we show some evidences for the existence of the glacier in the Baekdusan and their cosmogenic $^{36}Cl$ exposure ages over the late Quaternary and would put forward a model on the Quaternary landscape evolution of the Baekdusan, with a focus on the relationship of 1000 AD explosive eruption and the glacial landforms. The exposure ages constrained by cosmogenic $^{36}Cl$ abundances of the col surface of the western slope located below the glacier yield 46~26 ka, which is inphase with the last glacial period. Given all the evidences above, we can draw a conclusion that the glacier existed on the Baekdusan over the late Quaternary and the style of glaciation changed from extensive ice cap through valley glacier to restricted cirque.

  • PDF