• Title/Summary/Keyword: 착지

Search Result 144, Processing Time 0.018 seconds

The Effects of Landing Height and Distance on Knee Injury Mechanism (착지의 높이와 거리가 무릎 부상 메카니즘에 미치는 영향)

  • Cho, Joon-Haeng;Kim, Ro-Bin
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.2
    • /
    • pp.197-205
    • /
    • 2011
  • Various jumping and landing motions are shown during sports event. But most previous studies have not considered landing height and distance simultaneously. The purpose of this study was to identify the effects of landing height and distance on knee injury mechanism. Fourteen male(age: $28.86{\pm}1.99$ yrs, height: $177.00{\pm}4.69$ cm, weight: $76.50{\pm}6.41$ kg) participated in this study. The subjects attempted drop landing task onto the ground from 30 cm to 45 cm heights and to 20 cm to 40 cm distances. The results were as follows. First, higher drop landing height and longer distance showed greater degree of maximal knee flexion and valgus. Second, higher drop landing height and longer distance showed greater maximal knee extension moment and varus moment. Third, higher drop landing height and longer distance showed larger maximal knee absorption power. Lastly, higher drop landing height showed increased Peak GRF. Landing height was more related to the cause of injury, which was indicated by increased maximal knee extension moment, peak GRF and maximal knee absorption power. Landing distance was also associated with increased knee valgus moment and absorption power during landing. These results suggest that landing height and distance may be the cause of injury.

Injury Prevention Strategies of Landing Motion of Jumping Front Kick to Apply Free Style Poomsae of Taekwondo (태권도 자유 품새에 적용하기 위한 뛰어 앞차기 착지 동작의 상해 예방 전략)

  • Ryu, Sihyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.37-49
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the injury factors of Taekwondo jumping kick during landing phase according to the experience of injury and to suggest a stable landing movement applicable to free style Poomsae. Method: The participants were non-injury group (NG), n = 5, age: 20.5±0.9 years; height: 171.6±3.6 cm; body weight: 65.7±4.4 kg; career: 5.0±2.7 years. Injury group (IG), n = 9, age: 21.0±0.8 years; height: 170.9±4.6 cm; body weight: 67.1±7.0 kg; career: 8.6±5.0 years. The variables are impact force, loading rate, vertical stiffness, lower limb joint angle, stability, balance, and muscle activity in the landing phase. Results: NG was statistically larger than IG in the gluteus medius (p<.05). The impact force, loading rate and vertical stiffness decreased as the landing foot angle, the ROM of lower limb joint angle and COM displacement increased (p<.05). Conclusion: Based on the results, it means that the landing foot angle plays an important role in the impact reduction during landing phase. It is required the training to adjust the landing foot angle.

Analysis of the Vertical GRF Variables during Landing from Vertical Jump Blocking in Volleyball (배구 제자리 점프 블로킹 착지 시 숙련도에 따른 수직지면반력 변인 분석)

  • Youm, Chang-Hong;Park, Young-Hoon;Seo, Kook-Woong
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.57-64
    • /
    • 2007
  • The purpose of this study was to investigate comparative analysis of the vertical ground reaction force variables during landing from vertical jump blocking in volleyball through GRF analysis system. The subjects participated in this study were 6 male university volleyball player and 6 male acted as a control group. The results are as follows: 1. The skilled group was longer than the unskilled group in flight time during vertical jump blocking. 2. The skilled group was faster than the unskilled group in tFz2 during landing from vertical jump blocking. 3. The skilled group was higher than the unskilled group in Fz2 during landing from vertical jump blocking. 4. The skilled group was higher than the unskilled group in Fz2LR during landing from vertical jump blocking. 5. The skilled group was higher than the unskilled group in impulse during landing from vertical jump blocking. Consequently, during landing from vertical jump, the landing strategy of the skilled group was found as a form of a stiff landing. Therefore, this landing strategy will be required to strengthen of hip and knee extensors and ankle plantar flexors for injury prevention.

Analysis of Successful Landing by the Type of the Salto Backward (뒤 공중 돌기 유형에 따른 착지동작의 성공요인 분석)

  • Han, Yoon-soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • The purpose of this study is to provide training materials for practical use by investigating the kinematical variables of the successful landing by the type of the salto backward such as Tuck, Pike. For this study, the subjects are 4 male national gymnasts using 3-dimensional cinematographic method. Based on the results of this study, the conclusions are drawn as follows. 1. In flight phase, Tuck and Pike show fast extension after completing minimum angle of hip joint passing through the peak. It is very important factor to control body with gaining time before landing while decreasing the velocity of flight rotaion. 2. In Landing phase, the angles of each joint for successful landing are shown as $92deg{\sim}100deg$ for knee angle, $52deg{\sim}57deg$ for hip angle, and $56deg{\sim}70deg$ for shoulder angle. 3. Tuck and Pike dramatically decrease the height of COG, and horizontal/vertical velocity of COG from TD to LD. Also, it is shown that the knee angle, the hip angle and the shoulder angle decrease drastically. On the other hand, the angular velocity of trunk rotation shows negative direction and due to this, the angle of trunk rotation is shown as re-flexion.

Effect of Sports Taping on Impact Forces and Muscle Tuning during Drop Landing (드롭 착지 시 스포츠 테이핑이 하지의 충격력과 근육 조율에 미치는 영향)

  • Kang, Nyeon-Ju;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.175-182
    • /
    • 2010
  • The purpose of this study was to evaluate the biomechanical effect of sports taping on the lower limb during drop landing. Twelve male university students who have no musculoskeletal disorder were recruited as the subjects. Principal strain, median frequency, vertical GRF, loading rate, angular velocity and resultant joint moment were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between taped and untaped conditions(p<.05). The results showed that principal strain of the thigh and the shank in taping group were significantly less than those found in control group. These indicated that sports taping may prevent excessive mechanical strain caused by impact force during the deceleration phase. Flexion(-)-extension(+) and varus(-)-valgus(+) resultant joint moment of the knee joint in taping group were greater than corresponding value for control group. It seems that extensor muscle of the knee joint were not only supported by sports taping during knee flexion but also sports taping is effective for minimizing the possibility of injury.

Effects of Knee Joint Muscle Fatigue and Overweight on the Angular Displacement and Moment of the Lower Limb Joints during Landing (무릎 관절 근육 피로와 과체중이 착지 시 하지 관절의 각변위와 모멘트에 미치는 영향)

  • Kim, Tae-Hyeon;Youm, Chang-Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.1
    • /
    • pp.63-76
    • /
    • 2013
  • The purpose of this study was to investigate the effects of knee joint muscle fatigue and overweight on the angular displacement and moments of the lower limb joints during landing. Written informed consent forms, which were approved by the human subject research and review committee at Dong-A University, were provided to all subjects. The subjects who participated in this study were divided into 2 groups: a normal weight group and an overweight group, consisting of 15 young women each. The knee joint muscle fatigue during landing was found to increase the dynamic stability by minimizing the movements of the coronal and horizontal planes and maintaining a more neutral position to protect the knee. The effect of body weight during landing was better in the normal weight group than in the overweight group, with the lower limbs performing their shock-absorbing function in an efficient manner through increased sagittal movement. Therefore, accumulated fatigue of knee joint muscles or overweight may be highly correlated with the increase in the incidence of injury during landing after jumping, descending stairs, and downhill walking.

Analysis on Boundary Condition for Standing Balance of Four-Legged Robots (4족 로봇의 정지 밸런스를 위한 경계 조건 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.673-678
    • /
    • 2011
  • This paper analyzes the standing balance of four-legged robots which are useful for delivering objects or investigating of information. For this, we specify an effective model of general four-legged robots and propose a boundary condition based on the standing stability of the four-legged walking. To verify such a standing balance, we consider some exemplary free motions at the standing mode of the robot and discuss on the robot's balance margin. The analysis specified in this paper will be applicable for effective balancing control of various quadruped robotic walking.

GA Based Locomotion Method for Quadruped Robot with Waist Joint to Walk on the Slop (허리 관절을 갖는 4족 로봇의 GA 기반 경사면 보행방법)

  • Choi, Yoon-Ho;Kim, Dong-Sub;Kim, Guk-Hwa
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1665-1674
    • /
    • 2013
  • In this paper, we propose a genetic algorithm(GA) based locomotion method of a quadruped robot with waist joint, which makes a quadruped robot walk on the slop efficiently. In the proposed method, we first derive the kinematic model of a quadruped robot with waist joint and then set the gene and the fitness function for GA. In addition, we determine the best attitude for a quadruped robot and the landing point of a foot in the walk space, which has the optimal energy stability margin(ESM). Finally, we verify the effectiveness of the proposed method by comparing with the performance of the previous method through the computer simulations.

Lower extremity stiffness over different landing methods during hopping (호피 시 착지방법에 따른 하지 강성도)

  • Lee, J.J.;Son, J.S.;Kim, J.Y.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.105-108
    • /
    • 2011
  • The purpose of the present study was to analyze the lower stiffness over the difference between soft and stiff landings during hopping. Five male subjects performed hopping on two legs at 2.5 Hz. During the experiments, 3D motion capture system was used to obtain the kinematic data and two force plates were synchronized to calculate the kinetic data. We determined lower extremity stiffness of the knee and ankle from kinetic and kinematic data. Leg stiffness was approximately 1.2-times significantly higher in stiff landing than in soft landing_ There was no significant difference in knee joint stiffness between soft and stiff landings. Ankle joint stiffness was approximately 1.34-times significantly higher in stiff landing than in soft landing. These results suggest that humans adjust lower extremity stiffness over the comparison of two different landing methods we evaluated.

Effects of Landing Tasks on the Anterior Cruciate Ligament Injury Risk Factors in Female Basketball Players (여자 농구 선수들의 착지 유형이 전방십자인대 손상위험 요인에 미치는 영향)

  • Lee, Gye-San;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.385-390
    • /
    • 2014
  • The purpose of this study was to investigate the effects of landing tasks on the anterior cruciate ligament (ACL) injury risk factors in female basketball players. Fifteen female basketball players performed a drop landing and a drop landing with a vertical jump on the 40 cm height box. Three-dimensional motion analysis system and ground reaction force system was used for calculate the ACL injury risk factors. Paired samples t-test with Bonfferoni correction were performed. The drop landing with a vertical jump had the higher knee flexion angle, peak knee varus moment, trunk flexion angle than a drop landing. However, the drop landing had the higher trunk rotation angle than a drop landing with a vertical jump. These results indicate that seemingly minor variations between drop landing and drop landing with a vertical jump may influence the ACL injury risk factors. Caution should be used when comparing studies using different landing tasks.