• Title/Summary/Keyword: 착용센서

Search Result 228, Processing Time 0.028 seconds

A Study on the Monitoring Technique for Musculoskeletal Safety Management and Implementation of the System (근골격계 안전관리를 위한 모니터링 기법에 관한 연구 및 시스템 구현)

  • Shin, Yeong-Ju;Joo, Ha-Young;Yang, Jin-Hong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.267-276
    • /
    • 2020
  • Manufacturing workers are easily exposed to the risk of musculoskeletal disorders caused by repetitive tasks in their working environment. This is due to problems with occupational characteristics that repeatedly use the body. However, the current lack of monitoring systems for monitoring and prevention has led to an increase in workers' exposure to risks each year. This paper presents how to solve these problems in real working environment by producing wearable devices using IMU sensors. After wearing a wearable type device, the user's movement is judged through data analysis by receiving the rotation value according to musculoskeletal movement. At this time, the risk is determined by measuring the number of rotations of the user by eliminating bias and eliminating cumulative error, acquiring sophisticated data, and analyzing it in the form of dynamic threshold values. Using the wearable device proposed in this paper, the effect of this method could be checked through a web page measuring the number of rotations for elbow musculoskeletal disorders.

A Study on the Relationship between Color and Cardiovascular Parameters (색채 감성에 대한 심혈관 변수 관계성에 대한 연구)

  • Cho, Ayoung;Woo, Jincheol;Lee, Hyunwoo;Jo, Youngho;Whang, Mincheol
    • Science of Emotion and Sensibility
    • /
    • v.20 no.4
    • /
    • pp.127-134
    • /
    • 2017
  • Color is a significant factor for evoking human emotion. Therefore, the effects of color have been analyzed to predict and evaluate human emotion. The purpose of this study was to measure the cardiovascular responses depending on color stimuli in order to observe differences in color-emotions. Images consisting of six colors (red, green, blue, cyan, magenta, yellow) were used as visual stimuli. 26 college or graduate students (13 males) watched the color stimuli on the monitor and scored their subjective emotion while electrocardiogram (ECG) was meausred. The effects of the color on emotion were tested using Kruskal-Wallis test and Mann-Whitney U test. The coherence ratio showed significant differences between green and magenta (p = .004), green and red (p = .006), and green and yellow (p = .004). The significant differences of cardiovascular and emotions were relevant to emotional valence. This study shows significance as an empirical study by indicating that green induces pleasant and red induces unpleasant.

Design of The Wearable Device considering ICT-based Silver-care (ICT 기반 실버케어를 고려한 웨어러블 디바이스 설계)

  • Lee, Min-hye;Shin, Seong-yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1347-1354
    • /
    • 2018
  • A bedridden patients, elderly people, and dementia who are subject to special care at a medical institution can not handle the feces themselves and need the help of a guardian or care-giver. In particular, toxic substances are contained in the stools, which can cause eczema, dermatitis and urticaria, so it is important to replace diapers. In this paper, we propose a wearable device design for the detection of excretions in consideration of the various excretion requirements of the elderly. The device is a form in which a module are attached to an adult diaper used in a nursing hospital to detect excreta, and the presence or absence of a wearer can be confirmed by an LED. The measured data is transmitted to the smartphone app in real time via Bluetooth in the module and can be checked for popup notification. The validity of this study was verified by comparing the actual excretion with the data collected through the designed module.

Adaptive Concurrency Control Approach on Shared Object Manipulation in Mixed Reality

  • Lee, Jun;Park, Sung-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.75-84
    • /
    • 2021
  • In this paper, we propose an adaptive concurrency control scheme to reduce conflicts and working time in the cooperative work in mixed reality. To this ends, we first classified the goals, tasks and ownerships of the cooperative work. Then, the classified relationships are mapped according to their temporal and hierarchical relationships of shared object manipulation in the cooperative work. The proposed system provides adaptive concurrency controls of the shared object according to temporal orders of the sub-goals. With the proposed scheme, a participant is enable to move and rotate a shared object although another already has an ownership of the shared object in a specific order of the sub-goal. Thus, the proposed system provides adaptive and realistic cooperative working environment. We conducted a user study of the proposed scheme. The proposed system could reduce conflicts and working times comparing to conventional approaches.

Design and Implementation of Gas Leakage Alarm IoT System for Safety Helmet (안전모 장착용 가스 누출 경보 IoT 시스템 설계 및 구현)

  • Ju, Yong-Min;Lee, Hyo-Seung;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1411-1416
    • /
    • 2018
  • Currently, most of the industrial areas like chemistry, manufacturing, shipbuilding, and steel, perform the work related to gas, and the staffs who are in charge of this work have a risk of suffocation without cognizing incidents like gas leak. For example, when the nitrogen gas leaked in 2015 at Paju, two people were killed and four people were injured. In 2018 at Pohang, four workers were suffocated to death from nitrogen gas. In order to solve this problem, this study realized the system in which workers could immediately cognize the gas leak and also deliver the situation to the staff in charge of safety at the same time, by installing the IoT device composed of gas sensor and communication module on the safety helmet that should be worn by field workers. This study is expected to be able to reduce the casualties caused by gas leak in industrial sites.

Proposal of Safe PIN Input Method on VR (VR 상에서의 안전한 PIN 입력 방법 제안)

  • Kim, Hyun-jun;Kwon, Hyeok-dong;Kwon, Yong-bin;Seo, Hwa-jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.622-629
    • /
    • 2019
  • VR(Virtual Reality), which provides realistic services in virtual reality, provides a similar experience using a Head Mounted Display(HMD) device. When the HMD device is worn, it can not recognize the surrounding environment and it is easy to analyze the input pattern of the user with the Shoulder Surfing Attack(SSA) when entering the Personal Identification Number(PIN). In this paper, we propose a method to safeguard the user's password even if the hacker analyzes the input pattern while maintaining the user's convenience. For the first time, we implemented a new type of virtual keypad that deviates from the existing rectangle shape according to the VR characteristics and implemented the lock object for intuitive interaction with the user. In addition, a smart glove using the same sensor as the existing input devices of the VR and a PIN input method suitable for the rotary type are implemented and the safety of the SSA is verified through experiments.

Determination of Walking Direction for Guidance of the Blind (시각장애인 보행 안내를 위한 진행 방향 판단 기법)

  • Ko, Byung-oh;Kim, Hakyung;Son, Jinwoo;Jung, Kyeong-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.49-52
    • /
    • 2019
  • Braille guide block of sidewalk is an essential facility for independent walking of the blind. The blind walks while checking the braile guide blocks with white cane and sense of sole. When they leave the braile area, they face difficulties until they find the braile guide blocks again. In this paper, we propose an algorithm that guides the walking of the blind by determining whether they follows the braille guide blocks safely. For this purpose, the slope of the braille block is selected as a feature and a 3-line detector is introduced. Also the slopes are stabilized using spatial filtering to deal with breaks or junctions of the braille block during the progress and temporal filtering to cope with ego-motion of the blind. Through simulations using a dataset obtained from the real sidewalks and indoors, it can be shown that the proposed algorithm can successfully estimate the walking direction and determine whether the blind is out of the braille guide block area.

  • PDF

Analysis of Human Body Channel Based on Impulse Response Signals (임펄스 응답 신호를 이용한 인체 채널 분석)

  • Kang, Taewook;Lee, Jae-Jin;Oh, Wangrok
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.36-42
    • /
    • 2022
  • This study presents an analysis of the human body channel as an electric signal path using body impulse response (BIR). The human body communications (HBC) has recently emerged as an effective signal transmission method to create wireless body area networks (WBAN). We provide body channel characteristics based on measured BIR in a proper experimental environment for the HBC using capacitive coupling with a customized channel sounding device, which can be applied as a guideline for the HBC system design. The frequency response of the BIR, extracted by a customized signal processing for the measure signals, shows the channel path loss (CPS) between 0 MHz and 100 MHz with an average CPS of approximately 46.8 dB. In addition, the relative noise power distributions can provide estimations on the signal to noise ratio at the HBC receiver in terms of capacitor and resistor values in the measured frequency band and the frequency band lower than 3 MHz considering the baseband signal detection.

Wearable wireless respiratory monitoring system (의복착용형 무선 호흡모니터 시스템)

  • Lee, In-Kwang;Kim, Seong-Sik;Jang, Jong-Chan;Kim, Koon-Jin;Kim, Kyung-Ah;Lee, Tae-Soo;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.133-142
    • /
    • 2008
  • Respiration is induced by muscular contraction of the chest and abdomen, resulting in the abdominal volume change. Thus, continuous measurement of the abdominal dimension enables to monitor breathing activity. Conductive rubber cord has been previously introduced and tested to develop wearable application for respiratory measurements. The present study implemented wireless wearable respiratory monitoring system with the conductive rubber cord in the patient's pants. Signal extraction circuitry was developed to obtain the abdominal circumference changes reflecting the lung volume variation caused by respiratory activity. Wireless transmission was followed based on the zigbee communication protocol in a size of 65mm${\times}$105mm easily put in pocket. Successful wireless monitoring of respiration was performed in that breathing frequency was accurately estimated as well as different breathing patterns were easily recognized from the abdominal signal. $CO_2$ inhalation experiment was additionally performed in purpose of quantitative estimation of tidal volume. Air mixed with $0{\sim}5%\;CO_2$was inhaled by 4 normal males and the respiratory air flow rate, abdominal dimension change, and end tidal $CO_2$ concentration were simultaneously measured in steady state. $CO_2$ inhalation increased the tidal volume in normal physiological state with a correlation coefficient of 0.90 between the tidal volume and the end tidal $CO_2$ concentration. The tidal volume estimated from the abdominal signal linearly correlated with the accurate tidal volume measured by pneumotachometer with a correlation coefficient of 0.88 with mean relative error of approximately 8%. Therefore, the tidal volume was accurately estimated by measuring the abdominal dimension change.

The Usefulness of a Wearable Smart Insole for Gait and Balance Analyses After Surgery for Adult Degenerative Scoliosis: Immediate and Delayed Effects (척추측만증 환자의 수술 효과 평가 수단으로서 웨어러블 스마트 깔창을 이용한 보행분석의 유용성)

  • Seo, Min Seok;Shin, Myung Jun;Kwon, Ae Ran;Park, Tae Sung;Nam, Kyoung Hyup
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.2
    • /
    • pp.184-192
    • /
    • 2020
  • This study presents a gait analysis method (including time series analysis) using a smart insole as an objective and quantitative evaluating method after lumbar scoliosis surgery. The participant is a degenerative lumbar scoliosis patient. She took 3-min-gait-test four times(before and 8, 16, and 204-days after surgery) and 6-min-gait-test once(204-days after surgery) with smart-insoles in her shoes. Each insole has 8-pressure sensors, an accelerometer, and a gyroscope. The measured values were used to compare the characteristics of gait before and after surgery. The analysis showed that all of the patient's gait parameters improved after surgery. And after 6 months, the gait was more stable. However, after long walk, the swing duration of one leg was slightly shorter than that of the other again. It was a preclinical problem that could not be found in the visual examination by the practitioner. With this analysis method we could evaluate the improvement of patient quantitatively and objectively. And we could find a preclinical problem. This analysis method will lead to the studies that define and distinguish gait patterns of certain diseases, helping to determine appropriate treatments.