• Title/Summary/Keyword: 차폐 성능

Search Result 263, Processing Time 0.026 seconds

Experimental Study on the Development of EMP Shielded Concrete Using Industrial By-products (산업부산물을 사용한 EMP차폐 콘크리트 개발에 관한 실험적 연구)

  • Min, Tae-Beom;Kim, Hyeong-Cheol;Choi, Hyun-Kuk;Roh, Jeong-Heon;Kim, Kuk-Joo;Park, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.477-484
    • /
    • 2019
  • The purpose of this study is to present basic data for developing concrete with EMP shielding as the structure materials when constructing an EMP shielded building structure. In order to use metal-based recycled aggregates with excellent conductivity and easy procurement for EMP shielding concrete, an evaluation of the stability evaluation and EMP shielding performance was performed. Through the stability evaluation, it was found that the coarse aggregate stability criterion was satisfied, but the oxidized slag did not satisfy the fine aggregate stability criterion, the oxidized slag is not satisfied. In addition, as a result of fresh concrete, the workability is increased and the air volume is decreased. The compressive strength is increased due to the high density and coarse granularity of the recycled aggregates, which increased the cement paste and adhesion, thereby increasing the compressive strength. The results of an EMP shielding test show that aggregates with high shielding performance are electronic arc furnace(EAF) Oxidizing Slag and Cooper Slag. The shielding performance is expected to increase if the average particle size of aggregate is small or uniformly distributed.

The Application of Fiber-Reinforced Composites to Electromagnetic Wave Shielding Enclosures (섬유강화 복합재료의 전자파 차폐 기구물에 대한 적용에 관한 연구)

  • Park Ki-Yeon;Lee Sang-Eui;Lee Won-Jun;Kim Chun-Gon;Han Jae-Hung
    • Composites Research
    • /
    • v.19 no.3
    • /
    • pp.1-6
    • /
    • 2006
  • As the structures of the high performance electronic equipments and devices recently become more complex, the electromagnetic interference (EMI) and compatibility (EMC) have been very essential for commercial and military purposes. Thus, sensitive electrical devices and densely packed systems need to be protected from electromagnetic wave. In this research, glass fabric/epoxy composites containing conductive multi-walled carbon nanotube (MWNT) and carbon fiber/epoxy composites as electrical shielding materials were fabricated and electrical properties of the composites were measured. The concerning frequency band is from 300 MHz to 1 GHz. The performances of composite shielding enclosures were predicted using electromagnetic wave 3-D simulation tool, CST Microwave Studio. The shielding enclosure made of carbon fiber/epoxy composites were fabricated and the shielding effectiveness (SE) was measured in the anechoic chamber.

A study on the optimization of light weight high efficiency shield for gamma-ray imaging detector (감마선 영상화 장치용 경량 고효율 차폐체 최적설계에 관한 연구)

  • Park, Gang-teck;Lee, Nam-ho;Hwang, Young-gwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.773-774
    • /
    • 2016
  • In this study, we perform the weight reduction and miniaturization of the shielding element that is applied for gamma-ray detectors for imaging of gamma-ray source. Through previous studies, we implemented a lead-based shielding element that represents the shielding effectiveness and performance of commercially available gamma-ray imaging apparatus similar to the shielding body. In this paper, we designed a tungsten-based shield for weight reduction and miniaturization than lead-based shield. We performed the MCNP simulation for shield design and then we obtained the results of reducing the weight of the 17% and 51% of the volume.

  • PDF

Verification of the Star Tracker Sun Exclusion Angle of GEO-KOMPSAT-2A Through In-Orbit Operation (천리안 2A호 별추적기 태양 차폐각 궤도상 운영 검증)

  • Kang, Woo-Yong;Baek, Kwangyul;Kim, Seungkeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.243-249
    • /
    • 2021
  • The star tracker detects microscopic star light in space and compares it with a stored list of stars to calculate the satellite's position in the inertial coordinate system. If other light, such as the sun or the earth, enters the optical head, the star cannot be recognized and the star tracker cannot be operated. In particular, strong light such as the sun affects not only operation but also the performance of the star tracker. The sun exclusion angle of the star tracker is one of the important factors determining the performance of the star tracker. This paper performs the verification of the star tracker's sun exclusion angle. In order to verify the sun exclusion angle, we predict the sun exclusion time of the star tracker and compare it to the actual sun exclusion time of the GEO-KOMPSAT-2A star tracker. In addition, the performance of the star tracker is analyzed for normal operations against the sun exclusion in the optical head. It shows that the actual sun exclusion is maintained under the range of 26 degrees, the performance requirement of the star tracker, and the star tracker operates normally in spite of the sun exclusion.

A Study of Block Structures for Improving the Electromagnetic Shielding Properties (전자파 차폐성능 향성을 위한 건축용 블록의 형상 연구)

  • Lim, Gye-Jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.4
    • /
    • pp.175-179
    • /
    • 2012
  • In this paper, we proposed the modified block structures with enhanced electromagnetic shielding properties for mobie communications and ETC frequency bands. As the result of measurement, this block structure with optimized design has the shielding properties of 30 dB, and can be used for electromagnetic safety and EMI.

A Study on Slots to Improve the Shield Effects of a High Frequency RF module for Aircraft (항공기용 고주파 칩셋의 차폐율 개선을 위한 개구면 형상 연구)

  • Seung-Han, Kim;Sang Hoon, Park
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.18-23
    • /
    • 2022
  • This paper examines the electromagnetic shielding structure of ultra-high frequency (UHF) RF modules used in aircraft. Advances in electrical and electronic technologies have increased the need for electronic equipment in aircraft. High-frequency wireless devices have become integrated circuits in the form of UHF integrated circuits to support a wide range of frequencies and miniaturisation. To ensure the functionality and performance of these integrated devices in aviation, shielding is necessary to prevent unexpected electromagnetic interference, which could be detrimental to aircraft safety. A shield structure was designed to protect the RF chipset from malfunctioning, and the shielding effectiveness was improved through the application of various geometric shapes.

Characterization of FeCo Magnetic Metal Hollow Fiber/EPDM Composites for Electromagnetic Interference Shielding (FeCo 자성 금속 중공형 섬유 고분자 복합재의 전자파 차폐 특성 연구)

  • Choi, Jae Ryung;Jung, Byung Mun;Choi, U Hyeok;Cho, Seung Chan;Park, Ka Hyun;Kim, Won-jung;Lee, Sang-Kwan;Lee, Sang Bok
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.333-339
    • /
    • 2015
  • Electromagnetic interference shielding composite with low density ($1.18g/cm^3$) was fabricated using electroless plated FeCo magnetic metal hollow fibers and ethylene propylene diene monomer (EPDM) polymer. Aspect ratio of the fibers were controlled and their hollow structure was obtained by heat treatment process. The FeCo hollow fibers were then mixed with EPDM to manufacture the composite. The higher aspect ratio of the magnetic metal hollow fibers resulted in high electromagnetic interference shielding effectiveness (30 dB) of the composite due to its low sheet resistance (30 ohm/sq). The enhanced electromagnetic interference shielding effectiveness was mainly attributed to the formation of conducting network over the percolation threshold by high aspect ratio of fibers as well as an increase of the reflection loss by impedance mismatch owing to low sheet resistance, absorption loss, and multiple internal reflections loss.

MOSFET Dosimetry for Evaluation of Gonad Shielding during Radiotherapy (방사선 치료시 생식선 차폐체 성능 평가를 위한 MOSFET 선량 측정)

  • Kim, Hwi-Young;Choi, Yun-Seok;Park, So-Yeon;Park, Yang-Kyun;Ye, Sung-Joon
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.1
    • /
    • pp.23-27
    • /
    • 2011
  • In order to confirm feasibility of MOSFET modality in use of in.vivo dosimetry, evaluation of gonad shielding in order to minimize gonadal dose of patients undergoing radiotherapy by using MOSFET modality was performed. Gonadal dose of patients undergoing radiotherapy for rectal cancer in the department of radiation oncology of Seoul National University Hospital since 2009 was measured. 6 MV and 15 MV photon beams emitted from Varian 21EX LINAC were used for radiotherapy. In order to minimize exposed dose caused by the scattered ray not only from collimator of LINAC but also from treatment region inside radiation field, we used box.shaped lead shielding material. The shielding material was made of the lead block and consists of $7.5\; cm\;{\times}\;9.5\;cm\;{\times}5.5\;cm$ sized case and $9\;cm\;{\times}\;9.5\;cm\;{\times}\;1\;cm$ sized cover. Dosimetry for evaluation of gonad shielding was done with MOSFET modality. By protecting with gonad shielding material, average gonadal dose of patients was decreased by 23.07% compared with reference dose outside of the shielding material. Average delivered gonadal dose inside the shielding material was 0.01 Gy. By the result of MOSFET dosimetry, we verified that gonadal dose was decreased by using gonad shielding material. In compare with TLD dosimetry, we could measure the exposed dose easily and precisely with MOSFET modality.

Research on Radiation Shielding Film for Replacement of Lead(Pb) through Roll-to-Roll Sputtering Deposition (롤투롤 스퍼터링 증착을 통한 납(Pb) 대체용 방사선 차폐필름 개발)

  • Sung-Hun Kim;Jung-Sup Byun;Young-Bin Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.441-447
    • /
    • 2023
  • Lead(Pb), which is currently mainly used for shielding purposes in the medical radiation, has excellent radiation shielding functions, but is continuously exposed to radiation directly or indirectly due to the harmfulness of lead itself to the human body and the inconvenience caused by its heavy weight. Research on shielding materials that are human-friendly, lightweight, and convenient to use that can block risks and replace lead is continuously being conducted. In this study, based on the commonly used polyethylene terephthalate (PET) film and the fabric material used in actual radiation protective clothing, a multi-layer thin film was realized through sputtering and vacuum deposition of bismuth, tungsten, and tin, which are metal materials that can shield radiation. Thus, a shielding film was produced and its applicability as a radiation shielding material was evaluated. The radiation shielding film was manufactured by establishing the optimized conditions for each shielding material while controlling the applied voltage, roll driving speed, and gas supply amount to manufacture the shielding film. The adhesion between the parent material and the shielding metal thin film was confirmed by Cross-cut 100/100, and the stability of the thin film was confirmed through a hot water test for 1 hour to measure the change of the thin film over time. The shielding performance of the finally realized shielding film was measured by the Korea association for radiation application (KARA), and the test conditions (inverse wide beam, tube voltage 50 kV, half layer 1.828 mmAl) were set to obtain an attenuation ratio of 16.4 (initial value 0.300 mGy/s, measured value 0.018 mGy/s) and damping ratio 4.31 (initial value 0.300 mGy/s, measured value 0.069 mGy/s) were obtained. by securing process efficiency for future commercialization, light and shielding films and fabrics were used to lay the foundation for the application of films to radiation protective clothing or construction materials with shielding functions.

Development of Radiation Shielding Sheet with Environmentally-Friendly Materials; II: Evaluation of Barum, Tourmaline, Silicon Polymers in the Radiation Shielding Sheet (친환경 소재의 의료 방사선 차폐 시트 개발; II: 바륨, 토르말린의 실리콘 폴리머 차폐 시트의 성능 평가)

  • Kim, Seon-Chil;Park, Myeong-Hwan
    • Journal of radiological science and technology
    • /
    • v.34 no.2
    • /
    • pp.141-147
    • /
    • 2011
  • We developed an alternative radiation shielding material which is economical and has high protection efficiency. We validated the material in the form of sheet to make an apron. We increased the rate of barium and mixed tourmaline into silicon to improve the flexibility and protection rate of the sheet. The results showed that the shielding effect at low radiation energy is good enough with both 5 mm and 7 mm thickness. In the future, we will perform a quantitative evaluation of the reproducibility, volumetric efficiency, and porosity in mixing the ingredients.