• Title/Summary/Keyword: 차폐물질

Search Result 177, Processing Time 0.018 seconds

Study on the Development of an Outdoor Radiographic Test Shield Using 3D Printer Filament Materials (3D 프린터 필라멘트 재료를 이용한 야외 방사선투과검사용 차폐체 개발을 위한 연구)

  • Mun, Ik-Gi;Shin, Sang-Hwa
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.565-572
    • /
    • 2019
  • In this study, shielding analysis of material and thickness of 3D printer filaments was performed for the manufacture of custom shielding by radiation workers during outdoor radiographic test. The shielding was attached to the ICRU Slab Phantom after selecting the voxel source $^{192}Ir$ and $^{75}Se$ through simulation using MCNPX, and the distance between the source and the slab Phantom was set at 100 cm. The 12 shielding materials were divided into 5 mm units up to 200 mm from the absence of shielding materials to evaluate the energy absorbed per unit mass of each shielding material. The results showed that the shielding effect was high in the order of ABS + Tungsten, ABS + Bismuth, PLA + Copper, PLA + Iron from all sources of radiographic test. However, compared to lead, the shielding effect was somewhat lower. Based on this study in the future, further study of the atomic number and the high density filament material is necessary.

Analysis of CT Image Quality Change according to Clinical Application Shielding Materials (임상 적용 차폐물질에 따른 선량 및 CT 화질 변화 분석)

  • Hyeon-Ju Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.2
    • /
    • pp.215-221
    • /
    • 2023
  • Among brain CT scan conditions including the lens, the tube voltage was changed to 80, 100, and 120 kVp and applied. The change in dose was analyzed using lead, lead goggles and barium sulfate silicon shielding materials, and the degree of influence of the shielding materials on image quality was compared and analyzed by applying the SNR, CNR, and SSIM index analysis methods. As a result, it was analyzed that although the dose was reduced by applying all shielding materials, the difference in dose reduction was not large (P > 0.05). In addition, as for the change in image quality due to the application of the shielding material, SNR and CNR were the highest when lead goggles were applied, and the structural similarity was measured to be the best as it was closest to the reference value of 1 in SSIM analysis. Therefore, based on the results of this study, it is thought that if more diverse shielding materials and clinical test results are derived and applied, it will be helpful for the clinical application criteria in the case of shielding utilization inspection.

Study on Exposure Dose and Image Quality of Operator Using Shielding Material in Neuro Interventional Radiology (뇌혈관 중재적 시술에서 차폐체를 이용한 시술자의 피폭선량과 화질에 관한 연구)

  • Kim, Dae-ho;Kim, Sang-hyun;Lee, Young-jin;Lim, Jong-chun;Han, Dong-kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.579-587
    • /
    • 2017
  • Although interventional procedures use very low tube currents, there is a high risk of exposure to radiation as well as the operator due to long-term radiation exposure. The purpose of this study is to investigate the effects of radiation dose on the quality of the operator by measuring the dose received by the operator in the interventional procedure of the cerebral vascular system and finding the shielding material and shielding method which can effectively shield the exposure from the medical radiation. And to find a way to minimize it to the extent that it does not. As a result, when the newly designed shielding system with Nano Tungsten material was used, it was confirmed that the mean dose was reduced by 7.95% on average by the operator. Also, the PSNR results were measured to be 38.44 dB when using the designed shielding material, and it was confirmed that Nano Tungsten does not affect the image quality. In conclusion, the Nano Tungsten shielding material proved to be capable of significantly reducing the operator radiation dose, without affecting the image quality. The use of the above materials is expected to solve the problems related to the harmfulness and economical efficiency of the human body and the environment, which have recently become an issue of shielding materials.

핫셀 운영을 위한 부속 설치물의 차폐능 평가

  • 조일제;국동학;구정회;정원명;유길성;이은표;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.347-348
    • /
    • 2004
  • 차세대관리 종합공정 실증시설의 핫셀 차폐벽은 중량콘크리트 재질로서 외벽의 두께는 90cm 이상으로 설계되었으며, 차폐벽의 모든 부위는 이와 동일한 차폐능을 확보하도록 하여야 한다. 그러나 핫셀 운영을 위하여 불가피하게 설치되는 여러 가지 부속 시설물들에 의하여 원래 계획한 핫셀 차폐벽의 차폐능 저하를 가져오게 되며, 이런 부속 시설물로는 차폐 출입문, 방사성 물질을 핫셀 내부로 반입하거나 반출하기 위한 수송용기 접합부, 소형물 투입구, 슬리브 및 매설관등이 있다.(중략)

  • PDF

Hybrid Carbon Nanomaterials for Electromagnetic Interference Shielding (전자파 차폐용 하이브리드 탄소나노물질)

  • Lee, Si-Hwa;Oh, Il-Kwon
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.138-144
    • /
    • 2016
  • Recently, electromagnetic interference (EMI) shielding materials have been extensively developed and significantly considered to protect electronic systems from harmful electromagnetic waves. Although, metal-based materials show high electrical conductivity and EMI shielding effectiveness, they have several challenging problems such as high density and corrosion. Carbon-based materials have been acclaimed as alternative EMI materials due to light weight, high mechanical properties, resistance to corrosion and excellent electrical conductivity. Here, we introduce 1-phase and 2-phase carbon materials as well as 3-phase hybrid carbon materials. The 3-phase hybrid carbon materials composed of metal nanoparticles, carbon nanotubes and graphene can be used as a promising EMI shielding material.

Verification of the Possibility of Convergence Medical Radiation Shielding Sheet Using Eggshells (계란 껍데기를 이용한 융합 의료방사선 차폐시트의 가능성 검증)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.6
    • /
    • pp.33-38
    • /
    • 2021
  • In order to manufacture a lightweight medical radiation shielding sheet, a new shielding material was studied. We tried to verify the possibility of a shielding material by mixing egg shell powder, which is thrown away as food waste at home, with a polymer material. Existing lightweight materials satisfy eco-friendly conditions, but there are difficulties in the economics of shielding materials due to the cost of the material refining process. This study aims to solve this problem by using egg shells, which are household waste. A 3 mm-thick shielding sheet was fabricated using HDPE, a polymer material, and particle distribution within the cross-section of the shielding sheet was also verified. The shape of the particles was rough and there were voids between the particles, and the average weight per unit area was 1.5 g/cm2. The shielding performance was around 20% in the low energy area and 10% in the high energy area, showing the possibility of a low-dose medical radiation shielding body.

Development of Shielding using Medical Radiological Contrast Media; Comparison Analysis of Barium Sulfate Iodine Shielding ability by Monte Carlo Simulation (의료방사선 조영제를 이용한 차폐체 개발; 몬테카를로 시뮬레이션을 통한 황산바륨과 요오드의 차폐능 비교분석)

  • Kim, Seon-Chil
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.329-334
    • /
    • 2017
  • The purpose of this study is to estimating the possibility of manufacturing radiation shielding sheet by searching for environmentally friendly materials suitable for medical environment of medical radiation shielding. There are many tungsten products which are currently used as shielding materials in place of lead, but there are small problems in the mass production of lightweight shielding sheets due to economical efficiency. To solve these problems, a lightweight, environmentally friendly material with economical efficiency is required. In this study, Barium sulphate and Iodine were proposed. Both materials are already used as contrast medias in radiography, and it is predicted that the shielding effect will be sufficient in a certain region as a shielding material because of the characteristic of absorbing radiation. Therefore, in this study, we used a Monte Carlo simulation to simulate radiation shielding materials. When it is a contrast agent such as Barium sulfate and Iodine, the radiation absorption effect in the high energy region appears greatly, and the effectiveness of the two shielding substance in the energy region of the star with thickness of 120 kVp is also evaluated in the medical radiation imaging region. Simulated estimation results it was possible to estimate the effectiveness of shielding for all two substances. Iodine has higher shielding effect than barium sulfate, 0.05 mm thick appears great effect. Therefore, the Monte Carlo simulation confirms that iodine, which is a radiological contrast agent, is also usable as barium sulfate in the production of radiation shielding sheets.

A Study on the Shielding Element Using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 차폐체 원소 평가)

  • Kim, Ki-Jeong;Shim, Jae-Goo
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.269-274
    • /
    • 2017
  • In this research, we simulated the elementary star shielding ability using Monte Carlo simulation to apply medical radiation shielding sheet which can replace existing lead. In the selection of elements, mainly elements and metal elements having a large atomic number, which are known to have high shielding performance, recently, various composite materials have improved shielding performance, so that weight reduction, processability, In consideration of activity etc., 21 elements were selected. The simulation tools were utilized Monte Carlo method. As a result of simulating the shielding performance by each element, it was estimated that the shielding ratio is the highest at 98.82% and 98.44% for tungsten and gold.

Analysis of Shielding Effect of Lead and Tungsten by use of Medical Radiation (의료 방사선사용에 따른 납과 텅스텐의 차폐효과 분석)

  • Jang, Donggun;Kim, Gyoo Hyung;Park, Cheolwoo
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.173-178
    • /
    • 2018
  • Lead is a very useful material in shielding radiation in hospitals. But lead is toxic. Therefore, there are many studies on substitutable materials, Typically, there are many studies using tungsten. In this study, we investigated the physical properties of lead and tungsten and the Half value layer. As a result, lead having higher atomic number showed higher cross - sectional area than tungsten. But, at the same size, the electron density of tungsten with a high density is about 1.7 times higher than that of lead. In MCNPX simulation, the shielding effect of tungsten is about 1.4 times higher than that of lead, It was confirmed that tungsten had better shielding efficiency than lead. However, considering the economic aspect, tungsten is a rare metal, which is about 25 times more expensive than lead, which is considered to be inappropriate as an alternative to lead.