• 제목/요약/키워드: 차체 슬립 각도

검색결과 3건 처리시간 0.019초

능동전륜조향장치를 채택한 사륜조향차량의 횡방향 안정성 강화에 대한 연구 (A Study on Lateral Stability Enhancement of 4WS Vehicle with Active Front Wheel Steer System)

  • 송정훈
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.15-20
    • /
    • 2012
  • This study is to propose and develop an integrated dynamics control system to improve and enhance the lateral stability and handling performance. To achieve this target, we integrate an AFS and a 4WS systems with a fuzzy logic controller. The IDCS determines active additional steering angle of front wheel and controls the steering angle of rear wheel. The results show that the IDCS improves the lateral stability and controllability on dry asphalt and snow paved road when double lane change and step steering inputs are applied. Yaw rate of the IDCS vehicle tracks reference yaw rate very well and body slip angle is reduced about by 50%. Response time of the IDCS vehicle is also decreased.

제어시점에 따른 차량 안정성 제어 시스템의 제어 경향 (An Investigation of Con01 Threshold of Vehicle Stability Control System)

  • 정태영;이경수
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.195-201
    • /
    • 2005
  • In conventional Vehicle Stability Control (VSC) System, a control threshold is designed by average driver characteristics. Despite the stabilizing effort, VSC causes redundancy to an expert driver. An advanced VSC which has flexibility on its control property is proposed in this study. By using lateral velocity estimator, a control threshold is determined on side slip angle and angular velocity phase plane. Vehicle planar motion model based sliding controller is modified with respect to various control thresholds. The performance of the proposed VSC algorithm has been investigated by human-in-the-loop simulation using a vehicle simulator. The simulation results show that the control threshold has to be determined with respect to the driver steering characteristics. A VSC with variable control thresholds would provide an improvement compared to a VSC with a constant threshold.

타이어 슬립과 조향작동장치의 성능을 고려한 무인자동차 자율주행 제어 (Autonomous Vehicle Driving Control Considering Tire Slip and Steering Actuator Performance)

  • 박찬호;곽기성;정호운;홍도의;황성호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권3호
    • /
    • pp.36-43
    • /
    • 2015
  • An autonomous vehicle control algorithm based on Ackerman Geometry is known to be reliable in low tire slip situation. However, vehicles at high speed make lateral errors due to high tire slip. In this paper, considering the tire slip of vehicles, the steering angle is determined based on the Ackerman Geometry and is supplemented tire slip angle by the Stanley steering algorithm. In addition, to prevent the tire slip, the algorithm, which restricts steering if a certain level of slip occurs, is used to reduce the lateral error. While many studies have been extended to include vehicle slip, studies also need to be carried out on the tire slip depending on hardware performance. The control algorithm of autonomous vehicles is compensated considering the sensor noise and the performance of steering actuator. Through the various simulations, it was found that the performance of steering actuator was the key factor affecting the performance of autonomous driving. Also, it was verified that the usefulness of steering algorithm considering the tire slip and performance of steering actuator.