• Title/Summary/Keyword: 차원축소모델

Search Result 163, Processing Time 0.021 seconds

3D Data Dimension Reduction for Efficient Feature Extraction in Posture Recognition (포즈 인식에서 효율적 특징 추출을 위한 3차원 데이터의 차원 축소)

  • Kyoung, Dong-Wuk;Lee, Yun-Li;Jung, Kee-Chul
    • The KIPS Transactions:PartB
    • /
    • v.15B no.5
    • /
    • pp.435-448
    • /
    • 2008
  • 3D posture recognition is a solution to overcome the limitation of 2D posture recognition. There are many researches carried out for 3D posture recognition using 3D data. The 3D data consist of massive surface points which are rich of information. However, it is difficult to extract the important features for posture recognition purpose. Meanwhile, it also consumes lots of processing time. In this paper, we introduced a dimension reduction method that transform 3D surface points of an object to 2D data representation in order to overcome the issues of feature extraction and time complexity of 3D posture recognition. For a better feature extraction and matching process, a cylindrical boundary is introduced in meshless parameterization, its offer a fast processing speed of dimension reduction process and the output result is applicable for recognition purpose. The proposed approach is applied to hand and human posture recognition in order to verify the efficiency of the feature extraction.

Thermal Stress Analysis of Composite Beam through Dimension Reduction and Recovery Relation (차원축소와 복원관계를 통한 복합재료 보의 열응력 해석)

  • Jang, Jun Hwan;Ahn, Sang Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.381-387
    • /
    • 2017
  • Fiber-reinforced composites not only have a direction of thermal expansion coefficient, but also inevitably suffer thermal stress effects due to the difference between the manufacturing process temperature and the actual use temperature. The damage caused by thermal stress is more prominent in the case of thick composite laminates, which are increasingly applied in the aerospace industry, and have a great influence on the mechanical function and fracture strength of the laminates. In this study, the dimensional reduction and thermal stress recovery theory of composite beam structure having high slenderness ratio is introduced and show the efficiency and accuracy of the thermal stress comparison results between the 3-D finite element model and the dimension reduction beam model. Efficient recovery analysis study will be introduced by reconstructing the thermal stress of the composite beam section applied to the thermal environment by constructing the dimensional reduction modeling and recovery relations.

The Experimental Study of Fire Properties in Reduced-scale Atrium Space (아트리움 공간에서의 화재성상에 관한 축소모델 실험연구)

  • 류승관;김충익;유홍선
    • Fire Science and Engineering
    • /
    • v.13 no.4
    • /
    • pp.30-37
    • /
    • 1999
  • In this study, reduced-scale experiments as the alternative to a real-scale fire test were conducted to understand fire properties in atrium space. The scaling laws were derived from $\pi$-parameters which were deduced by dimensional analysis of governing equations (continuity, conservation of momentum and conservation energy). The 1/50 scale experiment simulated the real-scale fire test in SIVANS atrium at Japan were conducted under the scaling laws. And this results were compared with real-scale experiment results. Furthermore these results were visualized by video recording system using laser light sheet.

  • PDF

Study of Neural Network Training Algorithm Comparison and Prediction of Unsteady Aerodynamic Forces of 2D Airfoil (신경망 학습알고리즘의 비교와 2차원 익형의 비정상 공력하중 예측기법에 관한 연구)

  • Kang, Seung-On;Jun, Sang-Ook;Park, Kyung-Hyun;Jeon, Yong-Hee;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.425-432
    • /
    • 2009
  • In this study, the ability of neural network in modeling and predicting of the unsteady aerodynamic force coefficients of 2D airfoil with the data obtained from Euler CFD code has been confirmed. Neural network models are constructed based on supervised training process using Levenberg-Marquardt algorithm, combining this into genetic algorithm, hybrid genetic algorithm and the efficiency of the two cases are analyzed and compared. It is shown that hybrid-genetic algorithm is more efficient for neural network of complex system and the predicted properties of the unsteady aerodynamic force coefficients of 2D airfoil by the neural network models are confirmed to be similar to that of the numerical results and verified as suitable representing reduced models.

Modeling and Experimental Verification of Echo Characteristics of 3 Dimensional Underwater Target (3차원 수중 표적의 반향특성 모델링과 실험적 검증)

  • You, Seung-Ki;Kim, Sunhyo;Choi, Jee Woong;Kang, Donhyug;Jeong, Dongmin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.174-183
    • /
    • 2014
  • When a active sonar signal is transmitted and returned back from a target, it has been distorted by various properties of acoustic channel such as multipath arrivals. And signals have been appeared to be different form by target position and attitude. Therefore, we simulated the target echo signal using 3 dimensional target model include reflects target features. In this paper, we develop components form of a simulated target model is made up equally spaced highlight points, and each part of the target consists of shape function. We can simulate a target echo signal and Target strength (TS) according to wave incident angle. To verify, we made small scale target in kit form and we had got underwater target signal for comparing simulation result in water tank.

Design Optimization Simulation of Superconducting Fault Current Limiter for Application to MVDC System (MVDC 시스템의 적용을 위한 초전도 한류기의 설계 최적화 시뮬레이션)

  • Seok-Ju Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.3
    • /
    • pp.41-49
    • /
    • 2024
  • In this paper, we validate simulation results for the design optimization of a Superconducting Fault Current Limiter (SFCL) intended for use in Medium Voltage Direct Current systems (MVDC). With the increasing integration of renewable energy and grid connections, researchers are focusing on medium-voltage systems for balancing energy in new and renewable energy networks, rather than traditional transmission or distribution networks. Specifically, for DC distribution networks dealing with fault currents that must be rapidly blocked, current-limiting systems like superconducting current limiters offer distinct advantages over the operation of DC circuit breakers. The development of such superconducting current limiters requires finite element analysis (FEM) and an extensive design process before prototype production and evaluation. To expedite this design process, the design outcomes are assimilated using a Reduced Order Model (ROM). This approach enables the verification of results akin to finite element analysis, facilitating the optimization of design simulations for production and mass production within existing engineering frameworks.

A Development of 3D Viewer Using OPenGL (OpenGL을 이용한 3D 언어 개발)

  • 김병수;강병익
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.776-779
    • /
    • 2002
  • 본 논문에서는 OpenGL을 이용한 삼차원 뷰어(Viewer)를 개발한다. 3D Max와 같은 3D 개발 툴에서 침대, 소파 등 3D 모델 라이브러리를 제작한 후 일어들이는 렌더링 모듈을 개발한다. 3D 모델 라이브러리에 직물 이미지 라이브러리를 매핑하는 모듈도 개발하여 직물 이미지와 유사한 효과를 낼 수 있도록 한다. 3D max에서 광원과 질감을 포함하여 렌더링한 후 개발되는 프로그램으로 데이터 손실없이 읽어들이는 것을 목표로 한다. 3차원 모델에 설계된 직물 이미지를 사용하여 3D 매핑된 후. 사용자가 확대, 축소, 이동, 회전 등의 효과를 줄 수 있게 하는 사용자 인터페이스 제공 및 3D 애니메이션 기능을 구현한다.

  • PDF

Attack Detection and Classification Method Using PCA and LightGBM in MQTT-based IoT Environment (MQTT 기반 IoT 환경에서의 PCA와 LightGBM을 이용한 공격 탐지 및 분류 방안)

  • Lee Ji Gu;Lee Soo Jin;Kim Young Won
    • Convergence Security Journal
    • /
    • v.22 no.4
    • /
    • pp.17-24
    • /
    • 2022
  • Recently, machine learning-based cyber attack detection and classification research has been actively conducted, achieving a high level of detection accuracy. However, low-spec IoT devices and large-scale network traffic make it difficult to apply machine learning-based detection models in IoT environment. Therefore, In this paper, we propose an efficient IoT attack detection and classification method through PCA(Principal Component Analysis) and LightGBM(Light Gradient Boosting Model) using datasets collected in a MQTT(Message Queuing Telementry Transport) IoT protocol environment that is also used in the defense field. As a result of the experiment, even though the original dataset was reduced to about 15%, the performance was almost similar to that of the original. It also showed the best performance in comparative evaluation with the four dimensional reduction techniques selected in this paper.

A Study on the Behavior of Blasting Demolition for a Reinforced Concrete Structure Using Sealed Model Test and Particle Flow Analysis (축소모형실험과 입자결합모델 해석을 통한 철근 콘크리트 구조물의 발파해체 거동에 관한 비교 분석)

  • 채희문;전석원
    • Explosives and Blasting
    • /
    • v.22 no.1
    • /
    • pp.33-43
    • /
    • 2004
  • In this study, a comparison was made between the resulting behaviors of scaled model test and particle flow analysis for blasting demolition of a reinforced concrete structure. For the test and analysis, a progressive failure of a five-story structure was considered. The dimension analysis was carried out to properly scale down the real structure into the laboratory size. The test model was made of the mixture of gypsum, sand and water along with soldering lead to analogy reinforcing steel bars. The ratio of mixing components was chosen to best represent the scaled down strength and deformation modulus. The columns and girders of the structure were precasted in the laboratory and assembled right before the blasting test. The numerical analysis of the blasting demolition was carried out using PFC2D (Particle Flow Analysis 2-Dimension by Itasca). The results of the blasting of concrete lahmen structure showed roughly identical demolition behavior between scaled model test and numerical test. For the blasting of the reinforced concrete structure, the results were more identical and closer to the real demolition behavior, since the demolition behavior was better represented in this case due to the increased tensile strength of the component.

Performance Analysis and Configuration Design of the Thruster Nozzle for Ground-firing Test and Evaluation (지상연소시험평가용 추력기 노즐의 성능해석과 형상설계)

  • Kam, Ho-Dong;Kim, Jeong-Soo;Bae, Dae-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.10-16
    • /
    • 2012
  • A computational analysis of nozzle flow characteristics and plume structure is conducted to examine performance of the supersonic nozzle employed in a thruster for ground firing test. At first, flow simulations in two-dimensional converging-diverging nozzle are performed for the verification of computational capability as well as turbulence model validity. Axisymmetric converging-diverging nozzles for ground firing test are analyzed with the k-${\omega}$ SST model. A performance penalty caused by flow separation in a diverging section is observed in initially-designed nozzle. The performance could be enhanced by the modification of the diverging section of nozzle contour.