• Title/Summary/Keyword: 차안

Search Result 398, Processing Time 0.021 seconds

Analysis for Traffic Accident of the Bus with Advanced Driver Assistance System (ADAS) (첨단안전장치 장착 버스의 사고사례 분석)

  • Park, Jongjin;Choi, Youngsoo;Park, Jeongman
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.78-85
    • /
    • 2021
  • Recently a traffic accident of heavy duty vehicles under the mandatory installation of ADAS (Advanced Driver Assistance System) is often reported in the media. Heavy duty vehicle accidents are normally occurring a high number of passenger's injury. According to report of Insurance Institute for Highway Safety, FCW (Forward Collision Warning) and AEB (Automatic Emergency Braking) were associated with a statistically significant 12% reduction in the rate of police-reportable crashes per vehicle miles traveled, and a significant 41% reduction in the rear-end crash rate of large trucks. Also many countries around the world, including Korea, are studying the effects of ADAS installation on accident reduction. Traffic accident statistics of passenger vehicle for business purpose in TMACS (Traffic safety information Management Complex System in Korea) tends to remarkably reduce the number of deaths due to the accident (2017(211), 2018(170), 2019(139)), but the number of traffic accidents (2017(8,939), 2018(9,181), 2019(10,095)) increases. In this paper, it is introduced a traffic accident case that could lead to high injury traffic accidents by being equipped with AEB in a bus. AEB reduces accidents and damage in general but malfunction of AEB could occur severe accident. Therefore, proper education is required to use AEB system, simply instead of focusing on developing and installing AEB to prevent traffic accidents. Traffic accident of AEB equipped vehicle may arise a new dispute between a driver's fault and vehicle defect. It is highly recommended to regulate an advanced event data recorder system.

Development of an Improved Geometric Path Tracking Algorithm with Real Time Image Processing Methods (실시간 이미지 처리 방법을 이용한 개선된 차선 인식 경로 추종 알고리즘 개발)

  • Seo, Eunbin;Lee, Seunggi;Yeo, Hoyeong;Shin, Gwanjun;Choi, Gyeungho;Lim, Yongseob
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.2
    • /
    • pp.35-41
    • /
    • 2021
  • In this study, improved path tracking control algorithm based on pure pursuit algorithm is newly proposed by using improved lane detection algorithm through real time post-processing with interpolation methodology. Since the original pure pursuit works well only at speeds below 20 km/h, the look-ahead distance is implemented as a sigmoid function to work well at an average speed of 45 km/h to improve tracking performance. In addition, a smoothing filter was added to reduce the steering angle vibration of the original algorithm, and the stability of the steering angle was improved. The post-processing algorithm presented has implemented more robust lane recognition system using real-time pre/post processing method with deep learning and estimated interpolation. Real time processing is more cost-effective than the method using lots of computing resources and building abundant datasets for improving the performance of deep learning networks. Therefore, this paper also presents improved lane detection performance by using the final results with naive computer vision codes and pre/post processing. Firstly, the pre-processing was newly designed for real-time processing and robust recognition performance of augmentation. Secondly, the post-processing was designed to detect lanes by receiving the segmentation results based on the estimated interpolation in consideration of the properties of the continuous lanes. Consequently, experimental results by utilizing driving guidance line information from processing parts show that the improved lane detection algorithm is effective to minimize the lateral offset error in the diverse maneuvering roads.

A Study on the Analysis of Representative Bus Crash Types through Establishment of Bus In-depth Accident Data (버스 실사고 데이터 구축을 통한 대표 버스충돌유형 분석 연구)

  • Kim, Hyung Jun;Jang, Jeong Ah;Lee, Insik;Yi, Yongju;Oh, Sei Chang
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.4
    • /
    • pp.39-47
    • /
    • 2020
  • In this study, crash situations of representative bus crash types were elicited by analyzing a total of 1,416 bus repair record which were collected in 2018~2019. K-means clustering was used as a methodology for this study. Bus repair record contain the information of repair term, type of bus operation, responsibility of accident, weather condition, road surface condition, type of accident, other party, type of road and type of location for each data. Also, by checking collision parts of each bus repair record, each record was classified by types of collision regions. From this, 760 record are classified to frontal type, 363 record are classified to middle-frontal type, 374 record are classified to middle-rear type and 331 record are classified to rear type. As mentioned, k-means clustering was performed on each type of collision parts. As a result, this study analyzed the severity of bus crash based on actual bus accident data which are based on bus repair record not the crash data from the TAAS. Also, this study presented crash situation of representative bus crash types. It is expected that this study can be expanded to analyzing hydrogen bus crash and defining indicators of hydrogen bus safety.

A Study on the Effect of Metallic Fillers and Plastic for Ionic Migration (이온마이그레이션에 대한 플라스틱과 금속첨가제의 영향 연구)

  • Jeon, Sang Soo;Kim, Ji Jung;Lee, Ho Seung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.2
    • /
    • pp.30-34
    • /
    • 2021
  • Electrical failures and reliability problems of electronic components by ionic migration between adjacent device terminals have become an issue in automotive electronics. Especially unlike galvanic corrosion, ionic migration is occurred at high temperature and high humidity under applied electric field condition. Until now, although extensive studies of the ionic migrations dealing with PCBs, electrodes, and solders were reported, there is no study on the effect of insulation polymers and metallic fillers for ionic migration. In this research, therefore, ionic migration induced by the types and contents of polymers and metallic fillers, and variety conditions of temperature, humidity, and applied voltage was studied in detail. Ester and amide types of liquid crystal polymer (LCP) and poly (phthalamide) (PPA) were used as base polymers, respectively and compounded with the metallic fillers of Copper iodide (CuI), Zinc stearate (Zn-st), or Calcium stearate (Ca-st) in various compositions. The compounding polymers were fabricated in IPC-B-24 of SIR test coupon according to ISO 9455-17 with Cu electrodes for ionic migration test. While there is no change in LCP-based samples, ionic migration in PPA compounding sample with a high water absorption property was accelerated in the presence of 0.25 wt% or above of CuI at the environmental conditions of 85℃, 85% RH and 48V. The dendritic short-circuit growth of Cu caused by ionic migration between the electrodes on the surface of compounded polymers was systematically observed and analyzed by using optical microscopy and SEM (EDX).

LiDAR Static Obstacle Map based Vehicle Dynamic State Estimation Algorithm for Urban Autonomous Driving (도심자율주행을 위한 라이다 정지 장애물 지도 기반 차량 동적 상태 추정 알고리즘)

  • Kim, Jongho;Lee, Hojoon;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.14-19
    • /
    • 2021
  • This paper presents LiDAR static obstacle map based vehicle dynamic state estimation algorithm for urban autonomous driving. In an autonomous driving, state estimation of host vehicle is important for accurate prediction of ego motion and perceived object. Therefore, in a situation in which noise exists in the control input of the vehicle, state estimation using sensor such as LiDAR and vision is required. However, it is difficult to obtain a measurement for the vehicle state because the recognition sensor of autonomous vehicle perceives including a dynamic object. The proposed algorithm consists of two parts. First, a Bayesian rule-based static obstacle map is constructed using continuous LiDAR point cloud input. Second, vehicle odometry during the time interval is calculated by matching the static obstacle map using Normal Distribution Transformation (NDT) method. And the velocity and yaw rate of vehicle are estimated based on the Extended Kalman Filter (EKF) using vehicle odometry as measurement. The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment, and is verified with data obtained from actual driving on urban roads. The test results show a more robust and accurate dynamic state estimation result when there is a bias in the chassis IMU sensor.

Characterization of Alpha-Ga2O3 Epilayers Grown on Ni-Pd and Carbon-Nanotube Based Nanoalloys via Halide Vapor Phase Epitaxy (Ni-Pd-CNT Nanoalloys에서 성장한 α-Ga2O3의 특성분석)

  • Cha, An-Na;Lee, Gieop;Kim, Hyunggu;Seong, Chaewon;Bae, Hyojung;Rho, Hokyun;Burungale, Vishal Vilas;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.25-29
    • /
    • 2021
  • This paper demonstrates the utility of the Ni-Pd and carbon-nanotube (Ni-Pd-CNT)-based nanoalloy to improve the α-Ga2O3 crystal quality using the halide-vapor-phase epitaxy (HVPE) method. As result, the overall thickness of the α-Ga2O3 epitaxial layer increased from a Ni electroless plating time of 40 s to 11 ㎛ after growth. In addition, the surface morphologies of the α-Ga2O3 epilayers remained flat and crack-free. The full-width half-maximum results of the X-ray diffraction analysis revealed that the ($10{\bar{1}}4$) diffraction patterns decreased with increasing nominal thickness.

A Study on the Improvement of Motor Vehicles Safety Certification System According to the Deployment of Autonomous Vehicle (자율주행자동차 상용화에 따른 자동차 안전 인증제도 개선에 관한 연구)

  • Yong Hyuk, Cho;Jeong Ah, An;Sang Hyun, Lee
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.106-112
    • /
    • 2022
  • The purpose of this study is to explore ways of improving the motor vehicles safety certification system in preparation for the deployment of Lv.4 or higher autonomous vehicles. In order to effectively achieve the objectives of this study, theoretical and empirical research methodologies were employed, including literature review of prior research, government-published data, etc.; comparative research on legislative cases of other countries regarding motor vehicles safety certification; historical and legal research on domestic systems; legal analysis to explore approaches for improvement, etc. Some argue that the type approval system is needed in preparation for deploying autonomous vehicles, but there are several limitations in moving to the type approval system from the self-certification system currently adopted in Korea. First, there is a possibility that the system may be in conflict with the Korea-U.S. MOU regarding Foreign Motor Vehicles (1988) and the Korea-U.S. FTA (2011); second, there is a risk of undermining the cause of the self-certification system, which is the autonomy of manufacturers; third, the boundary between autonomous vehicles and non-autonomous vehicles is unclear; and fourth, the type approval system may hinder technological competitiveness. On the other hand, considering that the Korea-U.S. FTA and the UNECE IWVTA recognize exceptions to deal with road safety and risks to human health or the environment, and have a pre-certification system for some auto parts such as pressure-resistant containers, it can be said that there is room to introduce the type approval system for supplementation purposes. To improve the motor vehicles safety certification system while ensuring the safety of autonomous vehicles of Lv.4 or higher, the targets of type approval should be defined and the criteria, procedures, etc. for type approval should be established. At the same time, the consistency between motor vehicle-related laws and harmonization with international standards need to be considered.

A Study on the ACC Safety Evaluation Method Using Dual Cameras (듀얼카메라를 활용한 ACC 안전성 평가 방법에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.57-69
    • /
    • 2022
  • Recently, as interest in self-driving cars has increased worldwide, research and development on the Advanced Driver Assist System is actively underway. Among them, the purpose of Adaptive Cruise Control (ACC) is to minimize the driver's driving fatigue through the control of the vehicle's longitudinal speed and relative distance. In this study, for the research of the ACC test in the real environment, the real-road test was conducted based on domestic-road test scenario proposed in preceding study, considering ISO 15622 test method. In this case, the distance measurement method using the dual camera was verified by comparing and analyzing the result of using the dual camera and the result of using the measurement equipment. As a result of the comparison, two results could be derived. First, the relative distance after stabilizing the ACC was compared. As a result of the comparison, it was found that the minimum error rate was 0.251% in the first test of scenario 8 and the maximum error rate was 4.202% in the third test of scenario 9. Second, the result of the same time was compared. As a result of the comparison, it was found that the minimum error rate was 0.000% in the second test of scenario 10 and the maximum error rate was 9.945% in the second test of scenario 1. However, the average error rate for all scenarios was within 3%. It was determined that the representative cause of the maximum error occurred in the dual camera installed in the test vehicle. There were problems such as shaking caused by road surface vibration and air resistance during driving, changes in ambient brightness, and the process of focusing the video. Accordingly, it was determined that the result of calculating the distance to the preceding vehicle in the image where the problem occurred was incorrect. In the development stage of ADAS such as ACC, it is judged that only dual cameras can reduce the cost burden according to the above derivation of test results.

LiDAR Static Obstacle Map based Position Correction Algorithm for Urban Autonomous Driving (도심 자율주행을 위한 라이다 정지 장애물 지도 기반 위치 보정 알고리즘)

  • Noh, Hanseok;Lee, Hyunsung;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.39-44
    • /
    • 2022
  • This paper presents LiDAR static obstacle map based vehicle position correction algorithm for urban autonomous driving. Real Time Kinematic (RTK) GPS is commonly used in highway automated vehicle systems. For urban automated vehicle systems, RTK GPS have some trouble in shaded area. Therefore, this paper represents a method to estimate the position of the host vehicle using AVM camera, front camera, LiDAR and low-cost GPS based on Extended Kalman Filter (EKF). Static obstacle map (STOM) is constructed only with static object based on Bayesian rule. To run the algorithm, HD map and Static obstacle reference map (STORM) must be prepared in advance. STORM is constructed by accumulating and voxelizing the static obstacle map (STOM). The algorithm consists of three main process. The first process is to acquire sensor data from low-cost GPS, AVM camera, front camera, and LiDAR. Second, low-cost GPS data is used to define initial point. Third, AVM camera, front camera, LiDAR point cloud matching to HD map and STORM is conducted using Normal Distribution Transformation (NDT) method. Third, position of the host vehicle position is corrected based on the Extended Kalman Filter (EKF).The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment and showed better performance than only lane-detection algorithm. It is expected to be more robust and accurate than raw lidar point cloud matching algorithm in autonomous driving.

A Study on the Analysis of Bus Machine Learning in Changwon City Using VIMS and DTG Data (VIMS와 DTG 데이터를 이용한 창원시 시내버스 머신러닝 분석 연구)

  • Park, Jiyang;Jeong, Jaehwan;Yoon, Jinsu;Kim, Sungchul;Kim, Jiyeon;Lee, Hosang;Ryu, Ikhui;Gwon, Yeongmun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.1
    • /
    • pp.26-31
    • /
    • 2022
  • Changwon City has the second highest accident rate with 79.6 according to the city bus accident rate. In fact, 250,000 people use the city bus a day in Changwon, The number of accidents is increasing gradually. In addition, a recent fire accident occurred in the engine room of a city bus (CNG) in Changwon, which has gradually expanded the public's anxiety. In the case of business vehicles, the government conducts inspections with a short inspection cycle for the purpose of periodic safety inspections, etc., but it is not in the monitoring stage. In the case of city buses, the operation records are monitored using Digital Tacho Graph (DTG). As such, driving records, methods, etc. are continuously monitored, but inspections are conducted every six months to ascertain the safety and performance of automobiles. It is difficult to identify real-time information on automobile safety. Therefore, in this study, individual automobile management solutions are presented through machine learning techniques of inspection results based on driving records or habits by linking DTG data and Vehicle Inspection Management System (VIMS) data for city buses in Changwon from 2019 to 2020.