• Title/Summary/Keyword: 차안

Search Result 382, Processing Time 0.016 seconds

Forward Collision Warning System based on Radar driven Fusion with Camera (레이더/카메라 센서융합을 이용한 전방차량 충돌경보 시스템)

  • Moon, Seungwuk;Moon, Il Ki;Shin, Kwangkeun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.5-10
    • /
    • 2013
  • This paper describes a Forward Collision Warning (FCW) system based on the radar driven fusion with camera. The objective of FCW system is to provide an appropriate alert with satisfying the evaluation scenarios of US-NCAP and a driver acceptance. For this purpose, this paper proposed a data fusion algorithm and a collision warning algorithm. The data fusion algorithm generates information of fusion target depending on the confidence of camera sensor. The collision warning algorithm calculates indexes and determines an appropriate alert-timing by using analysis results of manual driving data. The FCW system with the proposed data fusion and collision warning algorithm was investigated via scenarios of US-NCAP and a real-road driving. It is shown that the proposed FCW system can improve the accuracy of an alarm-timing and reduce the false alarm in real roads.

A study on the sled test methods for IIHS small overlap performance development (IIHS small overlap 성능개발을 위한 대차 시험 방법 연구)

  • Oh, Hyungjooon;Kim, Seungki;Kim, Sungwon;Lim, Kyungho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.11-15
    • /
    • 2013
  • Small overlap crash caused fatal injury in real-world crash. IIHS(Insurance Institute for Highway Safety) proposed the small overlap test. The objective of this study is to analyze dummy injury criteria and dummy excursion on the sled reinforced body angle. Result of the comparisons of dummy injury criteria of a head, neck, and chest was best correlation between sled and vehicle test on base $angle+3^{\circ}$. However, lower extremity was not correlation because sled test could not copy of intrusion. There were a correlation between dummy movement and sled reinforced body angle. Sled reinforced body angle affects the lateral direction of excursion more than longitudinal excursion.

A Research on Predicting Dynamic Behavior of Door Locking System for Side Impact Safety

  • Kwak, K.T.;Choi, D.W.;Seo, S.W.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • The main purpose of this research is to predict dynamic behavior of door locking system for side impact safety and the design process to avoid door opening is introduced. The equations of motion that represent the system are obtained from the energy equation. From them, the motion of door handle is predicted by using Runge-Kutta $4^{th}$ order method and the simulation result is compared with the real crash data. Also, the design guide to define the properties of door locking system from the standpoint of avoiding door opening phenomenon is introduced.

Mechanical Characteristics of Automobile Brake Pads (자동차 브레이크 패드의 기계적 특성 연구)

  • Shin, Jaeho;Kim, Kyungjin;Kang, Woojong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.3
    • /
    • pp.19-24
    • /
    • 2015
  • Brake pads are a component of disc brake system of automobile and consist of steel backing plates and friction material facing the disk brake rotor. Due to the repeated sliding forces and torque in vehicle braking, friction performance of brake pads are ensured. Futhermore, the brake pad is one of major tuning components in aftermarket, mechanical characteristics of the brake pad are necessary to evaluate for establishing the certification standards of tuning components. This study had performed the five specimen tests for friction coefficients and wear loss rates according to the SAE test specification. Using the instrumented indentation method, yield strength and tensile strength were measured. Friction coefficients, 0.386 - 0.489, and wear loss rates, 1.0% - 3.7% are obtained. The range of yield strength and tensile strength are 21.4 MPa - 105.3 MPa and 39.5 MPa - 176.4 MPa respectively.

A Study for the Evaluation of V2V Communication Operation Safety (차량간 통신 운용 안전성 평가 방법 연구)

  • Jeon, Inja;Kim, Jongdae;Park, Jaehong;Shin, Jaegon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.3
    • /
    • pp.25-29
    • /
    • 2015
  • Research for Vehicle-to-Vehicle communication has been progressed in order to prevent accidents. In this paper, we decided the events that has high frequency accident of between vehicles on the road and we was arranged possible accident scenarios of each event; EEBL, LCW, BSD, FCW, PCW, IMA. When the event occurs between vehicles, we studied how to evaluate whether the information transmitted safely.

A Study for Driving Mechanism Evaluation of the Lane Keeping Assistance System (차선유지지원장치 작동 메커니즘 평가에 관한 연구)

  • Chung, Seung-Hwan;Kim, Jeong-Min;Kwon, Seong-Jin;Lee, Bong-Hyun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.69-74
    • /
    • 2013
  • LKAS(Lane Keeping Assistance System) main function is to support the driver in keeping the vehicle within the current lane. Therefore, this system is able to reduce the driver workload with assisting the driver during driving. In this paper, we presented on study for test procedures and evaluation methods of the LKAS. The vehicle test conducted on straight road, left curve, right curve and four different types of lane under various vehicle speeds. This study proposed the LKAS system test procedures and methods that we are able to identify LKAS driving mechanism and performance.

A Development of Active Vent Airbag for the Passenger New NCAP (동승석 최고 충돌성능 달성을 위한 액티브 벤트 에어백 기술 개발)

  • Yoo, Jaehaeng;Shin, Hyoseup;Kim, Taein;Bae, Hanil;Lee, Seungwoo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • For the robust passenger NCAP 5star and the stable neck injury performance, a new concept of passenger airbag has been required strongly. Especially, the deployment stability and the vent hole control technology of the passenger airbag should be improved. According to these requirements, the deployment stability technique has been studied and the 'Active Vent' technology has been developed. As a result, these technologies have led to achieve the robust NCAP rating and are applied to the production vehicles.

Development of Roll Stability Control of Commercial Vehicles with Environment Information (환경 정보를 이용한 상용차량 전복 방지 알고리즘 개발)

  • Park, Dongwoo;Her, Hyundong;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.50-55
    • /
    • 2013
  • When it comes to commercial vehicles, their unique characteristics - center of gravity, size, weight distribution - make them particularly vulnerable to rollover. On top of that, conventional heavy vehicle brake exhibits longer actuation delays caused in part by long air lines from brake pedal to tires. This paper describes rollover prevention algorithm that copes with the characteristics of commercial vehicles. In regard of compensating for high actuating delay, predicted rollover index with short preview time has been designed. Moreover, predicted rollover index with longer preview time has been calculated by using road curvature information based on environment information. When rollover index becomes larger than specific threshold value, desired braking force is calculated in order to decrease the index. At the same time, braking force is distributed to each tire to make yaw rate track desired value.

The Analysis of Injury Risk for the Type of Accident by Personal Mobility (퍼스널 모빌리티 사고 유형별 상해 위험성 분석)

  • Kim, Gyuhyun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.1
    • /
    • pp.6-14
    • /
    • 2020
  • Personal mobility, which was used exclusively for leisure activities, has recently been used as a means of transportation, and it is expected to increase its role as the next generation transportation. Sales of personal mobility are increasing rapidly, but the problem is that traffic accidents are also increasing. In this study, human body injury caused by various collisions between electric wheel users and road users that occur on bicycle or pedestrian roads mainly used by personal mobility is analyzed through collision analysis and collision risk analysis. In the case of the collision accident for electric wheel, it is analyzed that the road users are more likely to be injured on the pedestrian road than the bicycle road. In addition, the head hit each other or fall and hit the floor caused severe head injury.

Occupant Safety Analysis for Wheelchair Bus Development (휠체어 탑승 버스의 승객안전도 분석)

  • Kim, Kyungjin;Shin, Jaeho;Yong, Boojoong;Kang, Byungdo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.1
    • /
    • pp.39-45
    • /
    • 2020
  • The express/intercity bus models have been developing for wheelchair users to provide the preferable long-distance travels by the Korean government research. In the previous studies, evaluation method was set up for the wheelchair users' safety and the study for wheelchair occupants' safety was performed under various crash loadings mimic to real accidents, frontal crash, side impact and rollover, etc. This study was focused on the evaluation of occupant behaviors and injuries (head and chest) during vehicle impact loading cases in order to ensure the safety of wheelchair passengers in the bus. The occupant response and belt loading data during the sled FE simulation were compared with those of the sled test. The simulation results showed overall safety tolerances of wheelchair occupants under the severe frontal deceleration, side impact loading based on the FMVSS 214 configuration and bus rollover loading.