• Title/Summary/Keyword: 차수보강

Search Result 96, Processing Time 0.021 seconds

Determining of Ground Condition Criteria for Dam Reinforced RIM Grouting (댐체 강화 RIM부 그라우팅을 위한 지반상태 기준 결정)

  • Han, Kiseung;Lee, Donghyuk;Park, Duhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.181-186
    • /
    • 2022
  • Dam slope RIM is a highly important contact interface where the main body and the base surface are connected. In general, when the grouting for the slope of the dam structure is designed, it is planned using limited data (drilling, geological map, etc.). This makes it very difficult to accurately consider the original ground characteristics of the slope RIM grouting target, In addition, when the grouting volume planned during the design is drilled and injected into the original ground where the waterstop is secured, there is a possibility that the original ground with the waterstop is disturbed and the effect of the waterstop is rather diminished. In order to overcome such problems, it is more suitable to first consider geological conditions and determine whether to perform optimal grouting on the original ground through on-site repair tests before performing RIM grouting. In this paper, to determine the grouting of the RIM unit, a pilot hole water pressure test was performed on the rock of the slope in the target section. The analysis shows grouting volume of 1 Lugeon or less, and the cement injection amount also shows the injection result of 1 kg/m or less. In this case, performing grouting is rather counterproductive. This result can be evaluated through a rock of which some degree of order of mass is secured, as it is a dam design standard of 1 Lugeon or less when analyzed, using the results of visual observation and geological map creation during slope cutting. Therefore, in conclusion, it is preferable to make the decision for using RIM grouting on the slope of the dam body structure, based on 1 Lugeon in a rock state, and the cement injection amount also at 1 kg/m.

Development of Reinforcement Grout Materials Using Reinforcing Fiber and Blast Furnace Slag Powder (보강섬유와 고로슬래그 미분말 함유량에 따른 차수그라우트재 개발)

  • Seo, Hyeok;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.101-112
    • /
    • 2019
  • The grouting method is utilized to reinforce and waterproof poor grounds, enhance the bearing capacity of geo-structures damaged from differential settlement. The purpose of this research is to improve the compressive strength and degree of grout using reinforcing fibers and blast furnace slag powder. In this regard, this study has conducted uniaxial compression tests for the specimens with high ratios (higher than 50%) of blast furnace slag powder. The carbon fiber content was increased by 0, 0.5, and 1.0% to coMpare its compressive strength with that of aramid fiber. The uniaxial compressive strength increased with the increase of fiber content and the bridging activity by fiber in cement tended to increase uniaxial compressive strength. Based on the results, it was confirmed that the aramid fiber has a gel time of 14 seconds and the uniaxial compressive strength is more than 3 Mpa coMpared to carbon fiber.

A study on the stability analysis for grouting reinforcement in a subsea tunnel (해저터널에서의 그라우팅 보강을 위한 안정성 연구)

  • You, Kwang-Ho;Kim, Eun-Hye
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.145-155
    • /
    • 2010
  • Recently interest in subsea tunnels is increasing nationwide and the construction of a subsea tunnel is taking place. For the stability of such a subsea tunnel, grouting is necessary for the water barrier and reinforcement of the tunnel. In this study, therefore, it was investigated how the grouting reinforcement had an effect on the stability of a subsea tunnel located in a great depth. To this end, Hydro-mechanical coupled analyses were performed for a sensitivity analysis in terms of different grouting range, rock class, shotcrete thickness, coefficient of lateral earth pressure, grouting thickness, and pumping existence for the rock classes I, III, and V. FLAC-2D ver. 5.0 was used for the numerical analyses. It was came to the conclusion that the effect of the increased water pressure due to the water barrier of the grouting should be considered as well as the strength improved effect in designing grouting reinforcement of subsea tunnels.

Material Characteristics and Field Tests of FRP Reinforcing Members (FRP 보강재의 역학적 특성 및 현장시험 결과분석)

  • 석정우;김장용;김명모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10b
    • /
    • pp.31-42
    • /
    • 2001
  • 다양한 방식으로 제작된 유리섬유 강화 플라스틱관(FRP pipe)의 인장 및 휨강도 시험 결과로부터 제작방식에 따른 FRP관의 강도 특성을 비교 검토하였다. 또한, 사면보강대책으로서 FRP 그라우팅 공법의 현장 적용성을 평가하기 위하여, FRP 그라우팅에 따른 지반강도의 증진효과 및 보강재의 인발저항력을 산정하였다. 이를 위하여, 지반의 상대밀도 및 구속압에 따른 보강재 인발저항력의 변화 및 압력주입에 의한 확공효과 평가를 위하여 실내모형실험이 이루어졌다. 또한, FRP 그라우팅이 시공된 현장에서 공내재하시험, 투수시험, 그리고 시추공전단시험 등을 실시하여 FRP 그라우팅에 의한 지반보강 효과 및 차수효과를 정량적으로 산정하였다.

  • PDF

보호기능이 향상된 지오컴포지트의 제조 및 물성

  • 전한용;정진희;김소영;최윤희;김홍관
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.156-159
    • /
    • 1998
  • 토목섬유는 목적에 따라 보강, 필터, 차수, 분리등의 기능으로 널리 사용되고 있으며 최근에는 한가지 기능을 강화하거나 다기능성을 부여하기 위해 복합화한 재료들이 사용되고 있다. 현재 토목섬유는 여러종류의 관련제품이 개발되어 상품화되고 있으나 널리 사용되고 있는 품목은 가정용ㆍ산업용 폐기물 매립시 발생되는 침출수 차단 목적과 연약지반의 지지력 보강, 부등침하방지에 의한 지반보호, 흙 댐, 터널 건설 등에 이용되는 지오멤브레인과 세립토ㆍ자갈ㆍ돌덩어리ㆍ블럭등의 혼합을 막아주는 분리기능, 자체의 인장강도에 의해 흙 구조 물의 안정성을 증가시키는 보호기능을 갖는 지오텍스타일이 있다.(중략)

  • PDF

A Comparative Study on the Impermeability-reinforcement Performance of Old Reservoir from Injection and Deep Mixing Method through Laboratory Model Test (실내모형시험을 통한 지반혼합 및 주입공법의 노후저수지 차수 보강성능 비교 연구)

  • Song, Sang-Huwon
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.2
    • /
    • pp.45-52
    • /
    • 2022
  • Of the 17,106 domestic reservoirs(as of December 2020), 14,611 are older than 50 years, and these old reservoirs will gradually increase over time. The injection grouting method is most applied to the reinforcement method of the aging reservoir. However, the injection grouting method is not accurate in uniformity and reinforced area. An laboratory model test was conducted to evaluate the applicability of the deep mixing method, which compensated for these shortcomings, as a reservoir reinforcement method. As a result of calculating the hydraulic conductiveity for each method through the model test results, the injection grouting method was calculated as a hydraulic conductiveity value that was about 7.5 times larger than that of the deep mixing method. As a result of measuring the water level change in the laboratory model test, it was found that the water level change decreased in the injection method and deep mixing method compared to the non-reinforcement method. In addition, deep mixing method showed a water level change of about 15% based on 40 hours compared to the injection method, indicating that the water-reducing effect was superior to that of the injection method.

Engineering Properties of CB Cut-off Walls Mixed with GGBS (고로슬래그 미분말을 혼합한 CB 차수벽의 공학적 특성)

  • Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.5
    • /
    • pp.33-39
    • /
    • 2022
  • For a slag-cement-bentonite (slag-CB) cut-off wall, GGBS replaces a part of the cement mixed to build a CB cut-off wall, which is used to block the flow and leakage of pollutants or groundwater; prevent seawater infiltration; and repair or reinforcement an aged embankments. Slag-CB cut-off walls are used in various applications in different fields where groundwater control is required due to its excellent characteristics. Such properties include high strength, low permeability, high durability and chemical resistance. However, despite these advantages, slag-CB cut-off walls are not extensively studied in Korea and thus are not applied in many cases. Particularly, GGBS, which replaces cement in a mixture, has different properties depending on its country of production. Consequently, it is necessary to perform various studies on slag-CB cut-off walls that use GGBS produced in Korea in order to increase its usability. This study has evaluated the bleeding rate, setting time, strength, and permeability in relation to the cement replacement rate of GGBS produced in Korea for slag-CB cut-off walls, with the aim to increase its usability. The evaluation found that slag-CB cut-off walls, made of a mixture containing GGBS produced in Korea, have a lower bleeding rate and permeability, and higher strengththan CB cut-off walls. It was also analyzed that such improved performance is more effective with a higher cement replacement rate of GGBS.

A Study on the Waterproofing Performance of Waterproofing Methods for PHC-W Earth Retaining Wall Based on Pressure Chamber Test (PHC-W 흙막이 공법의 차수방안에 관한 차수성능확인을 위한 모형 압력 수조 실험 연구)

  • Choi, Yongkyu;Johannes, Jeanette Odelia;Yun, Daehee;Kim, Chae min;Jeon, Byeong Han
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.115-125
    • /
    • 2017
  • PHC-W earth retaining wall could be constructed continuously. Various retaining wall methods such as C.I.P. etc. method require separate waterproof method. However, the PHC-W retaining wall method prevents leakage of groundwater by inserting a waterproofing material at connection part between 2 PHC piles. In this study, the experimental study on 3 waterproofing method for PHC-W retaining wall was conducted at the model pressure chamber. In the method using textile with 1-liquid type and 2-liquid type urethane, rapid leak occurred at the pressure of 120 kPa and 140 kPa or more. In the method of textile with grouting, rapid leak occurred at the pressure of 120 kPa or more, however, in this method, the rapid leakage happened at the top part and the bottom part reinforced with urethane.