• Title/Summary/Keyword: 차세대 전동차

Search Result 44, Processing Time 0.035 seconds

Management Plan on Test Track of Advanced EMU System (차세대전동차 시스템 시험선 운영 방안)

  • Lee, H.M.;Kim, G.D.;Park, S.H.;Oh, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1036-1037
    • /
    • 2008
  • Test track of the Advanced EMU system will be developed and organically combined with technologies of power supply system, signal communication system and track structure. The purpose of the test track is a acquirement of reliability and stability through a sufficient performance test. Therefore, this paper draws up all management plans for tests of the Advanced EMU system.

  • PDF

A Study on Algorithm of Bogie Unit Braking System (차세대전동차 대차단위 제동시스템 알고리즘에 관한 연구)

  • Kim, Gil-Dong;Lee, Han-Min;Park, Sung-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1916-1921
    • /
    • 2008
  • In the braking process of rolling stocks, the equivalent braking force is applied to the all bogies. However, the load applied to the front and rear bogie are different in the actual commercial traveling. In the case, since the different slip situation is occurred in each bogie, it is essential to use the independent anti-slip control per bogie unit in order to reduce the loss of braking force. In this paper, the algorithm about bogie unit braking is proposed and verified.

  • PDF

A Study on the Application Method of Hydraulic Brake System for Advanced EMU (차세대전동차에 유압저동 적용방안 연구)

  • Lee, Woo-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.259-261
    • /
    • 2005
  • The hydraulic brake system is recently apply to the AGT system such merit as installation is convenient and brake force is stronger than pneumatic brake system. The hydraulic brake system consist of brake operating unit, electronic control unit, air compressor and pneumatic/hydraulic tranducer. The components of it are controlled and designed to perform the function of brake system. Therefore, This paper design and the hydraulic brake system and propose the detection of development for Urban Transit System.

  • PDF

Establishment of Product Data Management for Advanced EMU (차세대전동차 정보관리시스템 구축에 관한 연구)

  • Lee, Han-Min;Kim, Gil-Dong;Oh, Seh-Chan
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1418-1422
    • /
    • 2006
  • The project of advanced urban transit system development is developing the advanced vehicle and the core technologies for the cost down by system change, the transport safety and the environmental friendliness and the improvement of passenger service. The product data management system is installed for management of each project. Various data and informations producted from each project are made for database. Therefore, we develop the product data management system.

  • PDF

Investigation on Direct Driven IPMSM for Next Generation Locomotive (차세대 전동차용 직접 구동용 매입형 영구자석 동기전동기의 특성 고찰)

  • Kim, Min-Seok;Park, Ji-Seong;Kim, Dae-Kwang;Kim, Jung-Chul;Jung, Sang-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.4
    • /
    • pp.398-403
    • /
    • 2008
  • The propulsion for locomotive application has changed from the DC motor system to the induction motor system. Although the induction motor system has almost reached the stage of maturity, this system also needs to be changed to the PM motor system for the direct drive without using reduction gear. Thus, the IPMSM (Interior buried Permanent Magnet Synchronous Motor) has been adopted to meet the locomotive driving specification. Where the wheel is directly dirven by the traction motor. In this paper, the investigation on IPMSM satisfying driving specifications for the direct drive has been performed using the advanced FEM.

Development of Door Control Unit for the Electric Plug-in Door of Subway Train (전동차 전기식 플러그도어 출입문 제어 장치 개발)

  • Joung, Eui-Jin
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.47-53
    • /
    • 2011
  • The Electric Multiple Unit (EMU) has many types of door system such as sliding door, plug door etc.al. according to customer's requirements. The sliding door is widely used in Korea but has weak point in the noise problem. In the low operation speed, the noise coming from outer side of the EMU is not an important factor. As the speed is higher than before, noise is increased and make a problem. The main cause of noise is the imperfect air tightness in the EMU. The plug door system has advantages for the noise reduction characteristic in the high speed area. We have been developing electric plug-in door. The door is controlled by Door Control Unit(DCU) following the order of Automatic Train Protection (ATP) that is a kind of train signalling system. DCU has to simultaneously open and close the doors and the operation of it is related to the passengers safety. So DCU is a safety device that is important to reliability and safety. DCU is composed of several devices of control, motor driving, Input/Output, communication and power. In this paper, we will describe the functions, characteristic, requirement, subsystem and test results of DCU used for the electric plug-in door.

Performance tests result and consideration for AUTS(Advanced Urban Transit System) (차세대전동차 완성차시험 결과 및 고찰)

  • Hong, Jai-Sung;Kim, Gil-Dong;Lee, Chang-Mu;Won, Jong-Un;Lee, An-Ho;Sung, Chang-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1092-1096
    • /
    • 2011
  • The "standard regulation" of the vehicles from "urban transit law" are being adopted to electric multiple unit in domestic. In the standard regulation, there are two types for EMU. One is heavy EMU for Seoul. The other is large EMU for Pusan, Daegu, Gwangju, Daejeon, Incheon. Korea Railroad Research Institute, with the assistance of the Ministry of Land, Transport and Maritime Affairs, "advanced EMU development project" are progressed, and 6th year started at September, one unit to six cars is completed. Now "urban transit vehicle performance tests are on the current progress. The main characteristics of AUTS(Advanced Urban Transit System) are as follows. One inverter control one motor, DDM(Dircet Drive Motor), no driving gear, plug door and steps, mounting and maintenance costs down, passenger convenience improvement. This paper describes the key features the next generation EMU, and performance test results, and the commercial success method of national R&D business.

  • PDF

A study on advanced EMU's maintenance program on test operation in Dabul line (차세대 전동차 대불선 시운전 시 유지보수방안 연구)

  • Kim, Young-Kyu;Park, Se-Young;Song, Jeong-Hun;An, Cheon-Heon;Lee, Han-Min
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2215-2222
    • /
    • 2010
  • Advanced EMU have been enhanced in terms of safe transport and maintainability. It is a new urban railway technology that enables an operation institution to cut repair and maintenance costs and customers to use convenient service at lower costs based on IT technology. If a development vehicle of Advanced EMU is completed, it will be used to test the entire advanced EMU system through sufficient performance check and reliability check prior to operation in commercial line. It will also verify efficiency, safety, punctuality and energy efficiency of transport. Accordingly, it is necessary to figure how to repair and maintain vehicles to enhance safety of Advanced EMU system in cooperation with operation during the period of comprehensive evaluation on the operation of a development vehicle in a test line. In this paper, we investigated the maintenance program of Advanced EMU on test operation in Dabul line. The test condition and operation environment of Advanced EMU in Daebul line was analyzed.

  • PDF

Development for Sliding Step for Next Generation Train (차세대 전동차를 위한 슬라이딩 스텝 개발)

  • Ha, Dong-Ki;Seo, Soo-Ho;Park, Hung-Soo;Yoo, Hyeun-Bae;Park, Sung-Hyuk;Son, In-Suk
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1584-1589
    • /
    • 2007
  • Plug-in type door is installed in recently designed tube. It is world wide trend to fulfill the customer's demand. But, plug-in door need widely gap between doorway and platform and it is raise an serious accident. Therefore, newly designed train must have safety device like a sliding step to prevent incident. This paper present about development process for sliding step. Trend of sliding step, development plan, course, technical description, and etc. will be included in this paper.

  • PDF

The ergonomic design that considers the user interfaces in the railroad (지하철 이용 승객을 고려한 사용자 중심의 인간공학적 설계에 관한 연구)

  • Park S.H.;Oh S.H.;Yeo M.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.415-416
    • /
    • 2006
  • In this paper, we propose the ergonomics design method in shape design applicable which considers the user interface for railroad. This study focuses on ergonomics design and sensibility engineering design, user interface, which should be considered from the conceptual design stage of the rolling. Human's sensitivity and User Interface of railroad investigated ergonomics studies of several type. The sensibility engineering design made approach of user center design in railroad design. New design railroad to satisfaction passenger's various desire, to safety and convenient through high technology, to sufficient passenger's aesthetic sense. Therefore, we have application to properly of ergonomics design element in railroad design. we expert visual design and user interface help greatly in excellent railroad design.

  • PDF