• Title/Summary/Keyword: 차세대중형위성 3호

Search Result 14, Processing Time 0.018 seconds

Assessment of the Utility of Remote Sensing Techniques for Monitoring Compliance with Direct Payment Programs (직불제 이행점검 모니터링을 위한 원격탐사 기법 활용성 평가)

  • Hoyong Ahn;Jae-Hyun Ryu;Kyungdo Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1467-1475
    • /
    • 2023
  • The public-interest direct payment program involves providing direct payments to agricultural producers and rural residents through public funds, premised on performing public functions such as environmental conservation, stable food supply, and maintaining rural communities via agricultural activities. Scientific estimation of crop cultivation areas and production levels is crucial for formulating agricultural policies linked to regulating food supply, which increasingly impacts the national economy. Conducting comprehensive on-site inspections for compliance monitoring of direct payment programs has shown very low efficiency in relation to budget and time. The expansion of areas subject to compliance monitoring and various challenges in on-site inspections necessitate streamlining current monitoring methods and devising effective strategies. As a solution, the application of Remote Sensing technology and spatial information utilization, allowing swift acquisition of necessary information for policies without overall on-site visits, is being discussed as an efficient compliance monitoring method. Therefore, this study evaluated the potential use of remote sensing for improving operational efficiency in monitoring compliance with public-interest direct payment programs. Using satellite images during farming seasons in Gimje and Hapcheon, vegetation indices and spatial variations were utilized to identify cultivated areas, presence of mixed crops, validated against on-site inspection data.

U-Net Cloud Detection for the SPARCS Cloud Dataset from Landsat 8 Images (Landsat 8 기반 SPARCS 데이터셋을 이용한 U-Net 구름탐지)

  • Kang, Jonggu;Kim, Geunah;Jeong, Yemin;Kim, Seoyeon;Youn, Youjeong;Cho, Soobin;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1149-1161
    • /
    • 2021
  • With a trend of the utilization of computer vision for satellite images, cloud detection using deep learning also attracts attention recently. In this study, we conducted a U-Net cloud detection modeling using SPARCS (Spatial Procedures for Automated Removal of Cloud and Shadow) Cloud Dataset with the image data augmentation and carried out 10-fold cross-validation for an objective assessment of the model. Asthe result of the blind test for 1800 datasets with 512 by 512 pixels, relatively high performance with the accuracy of 0.821, the precision of 0.847, the recall of 0.821, the F1-score of 0.831, and the IoU (Intersection over Union) of 0.723. Although 14.5% of actual cloud shadows were misclassified as land, and 19.7% of actual clouds were misidentified as land, this can be overcome by increasing the quality and quantity of label datasets. Moreover, a state-of-the-art DeepLab V3+ model and the NAS (Neural Architecture Search) optimization technique can help the cloud detection for CAS500 (Compact Advanced Satellite 500) in South Korea.

A Study on Class Sample Extraction Technique Using Histogram Back-Projection for Object-Based Image Classification (객체 기반 영상 분류를 위한 히스토그램 역투영을 이용한 클래스 샘플 추출 기법에 관한 연구)

  • Chul-Soo Ye
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.157-168
    • /
    • 2023
  • Image segmentation and supervised classification techniques are widely used to monitor the ground surface using high-resolution remote sensing images. In order to classify various objects, a process of defining a class corresponding to each object and selecting samples belonging to each class is required. Existing methods for extracting class samples should select a sufficient number of samples having similar intensity characteristics for each class. This process depends on the user's visual identification and takes a lot of time. Representative samples of the class extracted are likely to vary depending on the user, and as a result, the classification performance is greatly affected by the class sample extraction result. In this study, we propose an image classification technique that minimizes user intervention when extracting class samples by applying the histogram back-projection technique and has consistent intensity characteristics of samples belonging to classes. The proposed classification technique using histogram back-projection showed improved classification accuracy in both the experiment using hue subchannels of the hue saturation value transformed image from Compact Advanced Satellite 500-1 imagery and the experiment using the original image compared to the technique that did not use histogram back-projection.

Object-based Building Change Detection Using Azimuth and Elevation Angles of Sun and Platform in the Multi-sensor Images (태양과 플랫폼의 방위각 및 고도각을 이용한 이종 센서 영상에서의 객체기반 건물 변화탐지)

  • Jung, Sejung;Park, Jueon;Lee, Won Hee;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.989-1006
    • /
    • 2020
  • Building change monitoring based on building detection is one of the most important fields in terms of monitoring artificial structures using high-resolution multi-temporal images such as CAS500-1 and 2, which are scheduled to be launched. However, not only the various shapes and sizes of buildings located on the surface of the Earth, but also the shadows or trees around them make it difficult to detect the buildings accurately. Also, a large number of misdetection are caused by relief displacement according to the azimuth and elevation angles of the platform. In this study, object-based building detection was performed using the azimuth angle of the Sun and the corresponding main direction of shadows to improve the results of building change detection. After that, the platform's azimuth and elevation angles were used to detect changed buildings. The object-based segmentation was performed on a high-resolution imagery, and then shadow objects were classified through the shadow intensity, and feature information such as rectangular fit, Gray-Level Co-occurrence Matrix (GLCM) homogeneity and area of each object were calculated for building candidate detection. Then, the final buildings were detected using the direction and distance relationship between the center of building candidate object and its shadow according to the azimuth angle of the Sun. A total of three methods were proposed for the building change detection between building objects detected in each image: simple overlay between objects, comparison of the object sizes according to the elevation angle of the platform, and consideration of direction between objects according to the azimuth angle of the platform. In this study, residential area was selected as study area using high-resolution imagery acquired from KOMPSAT-3 and Unmanned Aerial Vehicle (UAV). Experimental results have shown that F1-scores of building detection results detected using feature information were 0.488 and 0.696 respectively in KOMPSAT-3 image and UAV image, whereas F1-scores of building detection results considering shadows were 0.876 and 0.867, respectively, indicating that the accuracy of building detection method considering shadows is higher. Also among the three proposed building change detection methods, the F1-score of the consideration of direction between objects according to the azimuth angles was the highest at 0.891.