• 제목/요약/키워드: 차세대중형위성 3호

검색결과 14건 처리시간 0.02초

Introduction of the UVOMPIS (UV-Optical Multiband Polarizing Imager System) onboard the CAS500-3

  • Lee, Daehee
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.40.2-40.2
    • /
    • 2020
  • 500kg급 차세대중형위성은 공공분야 위성 수요에 효과적으로 대응하고, 국내 위성산업 저변 확대 및 산업체 육성을 위한 사업으로 개발되고 있다. 국내 산업체에서 개발되는 표준 위성 플랫폼이 적용될 예정인 차세대중형위성3호는 우주과학/기술검증용 위성으로, 특히 한국형발사체에 의해 2023년 발사된다는 점이 특별하다. 본 발표에서는 차세대 중형위성 3호에 제안한 우주망원경 UVOMPIS (UV-Optical Multiband Polarizing Imager System)에 대한 개념 설계 결과 및 과학 임무에 대한 소개를 통해 국내 학계와 산업계의 협력과 관심을 유도하고자 한다.

  • PDF

다종 위성영상 자료 융합 기반 수자원 모니터링 기술 개발 (Water resources monitoring technique using multi-source satellite image data fusion)

  • 이슬찬;김완엽;조성근;전현호;최민하
    • 한국수자원학회논문집
    • /
    • 제56권8호
    • /
    • pp.497-508
    • /
    • 2023
  • 수자원의 계절적 편중이 심한 한반도에서 농업용 저수지는 이를 효과적으로 유지 및 관리하기 위한 필수적인 구조물이다. 저수지 모니터링을 위한 수단으로 광학 및 합성개구레이더(Synthetic Aperture Radar, SAR) 위성영상이 활용되고 있으나, 광학영상은 기상현상에 의한 간섭이 심하다는 한계점이 존재하며, SAR 영상은 짙은 식생에서 일어나는 다중 산란 및 노이즈에 의한 오탐지 및 미탐지가 발생하기 쉽다. 이에 본 연구에서는 광학 영상과 SAR 영상의 융합을 통해 저수지 수체 탐지 정확도를 높이고 상호보완적 작용에 대해 정량적으로 분석하고자 하였다. 경기도 이동저수지, 충청남도 천태 저수지를 대상으로, 국내 고해상도 위성인 차세대중형위성 1호, 다목적실용위성 3호 및 3A호, 그리고 유럽우주국의 Sentinel-2 영상 기반 Normalized Difference Water Index (NDWI)와 SAR 탑재 위성인 Sentinel-1 단일 영상에 비지도학습 기법인 K-means 클러스터링 기법을 사용하여 수체를 탐지하고, NDWI-SAR 후방산란계수로 이루어진 2-D grid space에 동일 기법을 활용하여 정확도의 향상 정도를 파악하였다. 전반적인 정확도는 다목적실용위성이 가장 높은 것으로 나타났으며(두 저수지 모두 0.98), 이후 Sentinel-1(두 저수지 모두 0.93), Sentinel-2(이동: 0.83, 천태: 0.97), 차세대중형위성(이동: 0.69, 천태: 0.78) 순서로 감소하였다. 천태저수지에서 2-D K-means 클러스터링 기법을 적용한 결과 차세대중형위성의 수체탐지 정확도는 약 85%의 정밀도 향상과 14%의 재현율 감소와 함께 약 22% 향상되었으며(정확도 약 0.95), 다목적실용위성 및 Sentinel-2의 수체탐지 정밀도는 3-5% 향상되었고, 재현율은 4-7% 감소하였다. 추후 차세대중형위성 5호인 수자원위성 등 고해상도 SAR 위성과 이를 활용할 수 있는 고도화된 영상 융합기술, 수체 탐지 기술이 개발된다면 국내 수자원에 대한 매우 정확한 모니터링이 가능할 것으로 기대된다.

차세대 수자원위성 활용기술 개발을 위한 영상레이더 기반의 토양수분 및 농업적 가뭄지수 산정 (Soil moisture and agricultural drought index estimation based on synthetic aperture radar images for the next-generation water resources satellite application technology development)

  • 김성준;정지훈;이용관;남원호;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.5-5
    • /
    • 2023
  • 제3차 우주개발 진흥 기본계획의 일환으로써 개발되는 차세대 중형위성 5호인 수자원위성은 수자원/수재해 감시 전용 위성으로 2025년 발사 예정이다. 수자원위성의 메인 센서인 C-band 영상레이더(Synthetic Aperture Radar, SAR)는 기상조건 및 주야 상관없이 지표면 관측이 가능한 센서로 급변하는 수재해 양상에 효과적으로 대응하기 위해 탑재된 센서이다. 본 연구사업은 차세대 수자원위성의 효과적 활용 방안 및 SAR 자료기반의 활용산출물 및 주제도 서비스를 위한 알고리즘 구조설계 및 표출시스템 시범개발을 목표로 하고 있으며, 홍수/가뭄/안전/환경모니터링을 주제로 수자원 및 원격탐사 분야의 다학제적 전문가들로 구성된 컨소시엄을 구성하여 추진하고 있다. 본 연구의 내용은 가뭄 모니터링을 위해 개발 중인 SAR 기반 토양수분과 농업적 가뭄지수 산정 알고리즘 개발 및 공간적 표출을 포함한다. 토양수분은 SAR 영상에서 지표피복별로 추출된 후방산란계수와 수문학적 개념의 융합을 통해 논/밭/산림에 대해 산정한다. 물리적 특성에 기반한 변화탐지모델을 활용해 토양수분량을 추출 후, 기계학습기법과 S C S - C N 방법에서 파생된 수문학적 개념 5일 선행강우량과 결합한 토양수분 산정 알고리즘을 개발하였다. 산정된 토양수분을 기반으로, 논 지역은 벼 재배에 따른 담수 시기를 고려한 토양의 포화/불포화상태, 밭 지역은 토양 종류에 따른 토양의 물리적 특성, 산림 지역은 수문학적 개념 및 식생지수를 활용하여 가뭄 판단 기준을 구축하고, 가뭄의 해갈 여부와 해갈되는 시점의 강우량을 산정 가능한 알고리즘을 개발하였다. 개발된 가뭄 모니터링 기법은 향후 고도화, 최적화 및 안정화를 통해 수자원위성의 핵심 활용기술로써 구현할 계획이다.

  • PDF

차세대중형위성 3호 과학탑재체 바이오캐비넷용 수동형 진동절연기의 발사진동 저감성능 검증 (Validation of Launch Vibration Isolation Performance of the Passive Vibration Isolator for the Scientific Payload BioCabinet for CAS500-3)

  • 서동재;박연혁;이영진;이지승;김경희;김순희;박찬흠;오현웅
    • 항공우주시스템공학회지
    • /
    • 제18권4호
    • /
    • pp.81-88
    • /
    • 2024
  • 차세대 중형위성 3호의 탑재체 중 바이오캐비넷은 우주공간에서 바이오 3D프린팅 기법을 이용한 3차원 줄기세포 분화, 배양 및 분석 임무를 수행한다. 상기 3D 프린팅 기법은 궤도환경에서 사용을 목적으로 개발되었으나, 극심한 발사환경에 대한 별도의 검증이 이루어지지 않아 탑재체에 전달되는 발사하중을 저감 시키는 설계가 필수적이다. 본 논문에서는 바이오캐비넷에 전달되는 발사하중 저감을 위해 저강성 탄성 지지구조 적용 및 고댐핑 특성을 부여한 수동형 진동절연기를 제안하였으며, 고댐핑 특성을 부여하기 위해서 초탄성 형상기억합금의 초탄성 효과와 점탄성 테이프를 이용한 적층형 구조에 주목하였다. 제안한 진동절연기 인증모델에 대한 발사진동시험을 통해 설계유효성을 검증하였다.

농림위성 활용 수종분류 가능성 평가를 위한 래피드아이 영상 기반 시험 분석 (A Study on Pre-evaluation of Tree Species Classification Possibility of CAS500-4 Using RapidEye Satellite Imageries)

  • 권수경;김경민;임중빈
    • 대한원격탐사학회지
    • /
    • 제37권2호
    • /
    • pp.291-304
    • /
    • 2021
  • 기후변화나 여러 환경문제들로부터 지속 가능한 산림자원 관리 및 모니터링을 위해 임상도의 지속적인 갱신은 필수적이다. 따라서 효율적이고 광역적인 산림 원격탐사의 필요성에 따라 차세대 중형위성 4호의 사업이 확정되어 2023년 발사 예정에 있다. 농림위성(차세대 중형위성 4호)는 5 m급 공간해상도와 Blue, Green, Red, Red Edge, Near Infra Red 총 5개 밴드를 가진다. 본 연구는 농림위성의 발사 및 활용에 앞서 농림위성과 유사한 사양을 가지는 RapidEye를 이용하여 위성 기반 수종분류의 가능성을 모의 평가하기 수행되었다. 본 연구는 춘천 선도산림경영단지를 연구 대상지로 하였으며, RapidEye 위성 영상기반 모의 수종분류는 생육기 영상으로부터 추출한 분광정보와 생육기와 비생육기의 NIR 밴드로부터 추출한 GLCM 질감특성 정보가 활용되었고, 이를 입력데이터로 하여 랜덤 포레스트(Random Forest) 기법을 적용하였다. 본 연구에서는 침엽수종 3종(소나무, 잣나무, 낙엽송), 활엽수종 5종(신갈나무, 굴참나무, 자작나무, 밤나무, 기타활엽수), 침활혼효림 총 9종으로 임상을 분류하였다. 분류 정확도는 임상도와 분류 결과를 대조하여 산출하였으며, 분류 정확도는 분광정보만 사용한 경우 39.41%, 분광정보과 질감정보를 모두 사용한 경우 69.29%의 정확도를 보였으며, 다중시기 분광정보 및 질감정보의 활용을 통해 5 m 해상도의 위성영상으로부터 수종분류의 가능성이 있음을 확인하였다. 향후 식생의 생태적 특성을 더욱 효과적으로 반영한 추가 변수를 대입하여 농림위성 활용 가능성을 제고하고자 한다.

6SV2.1과 GK2A AOD를 이용한 기계학습 기반의 Sentinel-2 영상 대기보정 (Machine Learning-based Atmospheric Correction for Sentinel-2 Images Using 6SV2.1 and GK2A AOD)

  • 김서연;윤유정;강종구;정예민;최소연;임윤교;서영민;박찬원;이경도;나상일;안호용;류재현;이양원
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.1061-1067
    • /
    • 2023
  • 이 단보에서는 차세대 중형위성 4호(농림위성)의 활용에 앞서, 농림위성과 분광밴드가 유사한 Sentinel-2 위성영상에 대하여 대기보정을 모의하였다. second simulation of the satellite signal in the solar spectrum - vector(6SV)2.1 복사전달모델과 기계학습의 일종인 랜덤 포레스트(random forest, RF)를 활용하여 6SV2.1을 모사한 RF 기반의 대기보정 모델을 개발한 결과, 6SV2.1로 산출된 반사도와 RF 모델로 예측된 반사도 간의 유사도가 매우 높게 나타났다.

차세대중형위성 5호 활용 확대를 위한 영상레이더의 환경분야 활용 방안 연구 (A Study on the Environmental Application of Image Radar for Expanding the Use of Next Generation Medium Satellite 5)

  • 한현경;이명진
    • 대한원격탐사학회지
    • /
    • 제35권6_3호
    • /
    • pp.1251-1260
    • /
    • 2019
  • 기존의 공간적 해상도 중심의 환경공간정보의 활용은 물리적, 화학적 특징파악이 동반되어야 하는 현실적인 환경 분야의 문제 해결에 한계 점이 있다. 이에 기상조건, 주야, 일조량에 관계 없이 대상의 물리적 특징 파악이 가능한 영상레이더의 환경분야 활용의 필요성이 대두되고 있다. 미국, 유럽 등 국가에서 발사한 영상레이더 위성은 고유목적 이외에도 다양한 환경 분야에 사용되고 있었다. 따라서 수자원 수재해 모니터링을 목표로 개발 중에 있는 우리나라의 차세대 중형 5호 위성도 기존 활용 목적에 충실하면서 다양한 활용 분야로 범위 확대 방안을 모색하였다. 이를 위해 영상레이더가 환경분야 활용된 국내외 논문 분석(100편)을 수행하였고 텍스트 마이닝 기법을 적용한 환경공간정보 활용 분석을 수행한 KEI 2016년 연구보고서, 국내논문, 국외논문 검토를 수행하였다. 이를 바탕으로 다양한 환경이슈를 정리하고 영상레이더가 활용됐을 때 효과 등을 분석해본 결과 토지피복을 환경이슈로 선정하였다. 향후 본 연구에서 선정된 환경이슈인 토지피복지도의 정확도 개선기술을 구체화하고 토지피복지도의 안정적 활용을 위한 기반 시스템을 구축하고자 한다.

차세대 중형 3호의 Magnetic Cleanliness Algorithm (Magnetic Cleanliness Algorithm for Satellite CAS500-3)

  • 최정림;이동렬;이승욱;최두영;유광선
    • 우주기술과 응용
    • /
    • 제3권3호
    • /
    • pp.229-238
    • /
    • 2023
  • 위성에서 나오는 자기잡음(magnetic noise)을 줄이는 것은 위성탐사에서 자력계의 성능을 향상시키는 중요한 방법 중의 하나이다. 자기잡음(magnetic noise)를 줄이는 방법 중의 하나가 위성에서 붐(boom)을 길게 뽑아내는 것이나, 이것은 높은 비용과 위성 운용 난이도 측면에서 선호하지 않는 방법이다. 그래서 많은 경우, 자기장 데이터 산출 후에 측정 데이터 세트에서 위성 플랫폼의 자기 간섭을 제거하는 것이 널리 사용된다. 본 연구에서는 붐 없이 태양전지판에 2개 그리고 본체 1개씩 각각 설치된 자력계(magnetometer)에서 관측한 자기잡음(magnetic noise)을 제거하는 알고리즘을 소개하고자 한다.

모의영상을 이용한 농림위성 대기보정의 주요 파라미터 민감도 분석 및 타위성 산출물 활용 가능성 제시 (Sensitivity Analysis for CAS500-4 Atmospheric Correction Using Simulated Images and Suggestion of the Use of Geostationary Satellite-based Atmospheric Parameters)

  • 강유진;조동진;한대현;임정호;임중빈;오금희;권언혜
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.1029-1042
    • /
    • 2021
  • 차세대 중형위성 사업의 일환으로 농지 및 산림에서의 원격 탐사를 위하여 농림위성 (차세대 중형위성 4호)이 발사 예정에 있다. 위성 영상에서 식생의 정량적인 정보를 얻기 위해서는 대기보정을 통한 지표 반사도 취득이 선행되어야 하므로 농림위성을 위한 대기보정 기술 개발은 불가피할 것으로 생각된다. 특히 대기에서의 흡수와 산란 특성은 파장에 따라 다르게 나타나므로 농림위성 파장 영역을 고려한 대기보정 파라미터 민감도 분석이 필요하다. 또한, 농림위성은 5개 채널(Blue, Green, Red, Red edge, Near-infrared)을 보유하고있어 대기보정 주요 파라미터인 AOD (Aerosol optical depth)와 WV (Water vapor)를 직접 산출하기 어려우므로 이를 외부에서 제공할 수 있는 방안을 마련할 필요가 있다. 따라서, 본 연구에서는 농림위성과 유사한 사양을 가진 Sentinel-2 위성 영상을 이용하여 주요 파라미터인 AOD, WV, O3 민감도 분석을 수행하고, 파라미터 제공을 위해 천리안 2A (GK2A; GEO-KOMPSAT-2A) 정지궤도 복합위성의 산출물을 이용하여 대기보정 파라미터로서의 활용 가능성을 살펴보았다. 민감도 분석 결과는 AOD가 가장 중요한 파라미터임을 보여주었으며, 근적외선 채널보다는 가시광 채널에서 더 큰 민감도를 가지는 것으로 나타났다. 특히 Blue 채널에서 AOD의 20%의 변화는 지표 반사도에서 약 100%의 오차율을 야기하므로 정확한 지표 반사도 취득을 위해서는 높은 신뢰성을 가진 AOD가 필요할 것으로 생각된다. GK2A AOD 산출물을 이용한 대기보정 결과는 토지피복별 분류 가능성을 이용하여 Sentienl-2 L2A 자료와 비교한 결과, 두 모델별 분류 가능성은 유사하였으나, 파장대가 짧은 영역일수록 GK2A AOD 산출물을 적용한 대기보정 결과가 Sentinel-2 L2A보다 높게 나타났다. 이를 통해 GK2A에서 제공되는 산출물이 향후 농림위성 대기보정 파라미터로서 충분히 활용될 수 있을 것으로 판단된다. 본 연구의 결과는 추후 농림위성 발사 후 대기보정에 참고 자료로서 활용될 수 있을 것으로 기대된다.

DeepLabV3+와 Swin Transformer 모델을 이용한 Sentinel-2 영상의 구름탐지 (Cloud Detection from Sentinel-2 Images Using DeepLabV3+ and Swin Transformer Models)

  • 강종구;박강현;김근아;윤유정;최소연;이양원
    • 대한원격탐사학회지
    • /
    • 제38권6_2호
    • /
    • pp.1743-1747
    • /
    • 2022
  • Sentinel-2는 분광파장대나 공간해상도 측면에서 우리나라 차세대중형위성 4호(농림위성)의 모의영상으로 활용될 수 있다. 이 단보에서는 향후 농림위성영상에 적용하기 위한 예비실험으로, 딥러닝 기술을 이용한 Sentinel-2 영상의 구름탐지를 수행하였다. 전통적인 Convolutional Neural Network (CNN) 모델인 DeepLabV3+와 최신의 Transformer 모델인 Shifted Windows (Swin) Transformer를 이용한 구름탐지 모델을 구축하고, Radiant Earth Foundation (REF)에서 제공하는 22,728장의 학습자료에 대한 암맹평가를 실시하였다. Swin Transformer 모델은 0.886의 정밀도와 0.875의 재현율로, 과탐지와 미탐지가 어느 한쪽으로 치우치지 않는 경향을 보였다. 딥러닝 기반 구름탐지는 향후 우리나라 중심의 실험을 거쳐 농림위성 영상에 활용될 수 있을 것으로 기대된다.