• Title/Summary/Keyword: 차선 정렬

Search Result 3, Processing Time 0.019 seconds

Vision Aided Inertial Sensor Bias Compensation for Firing Lane Alignment (사격 차선 정렬을 위한 영상 기반의 관성 센서 편차 보상)

  • Arshad, Awais;Park, Junwoo;Bang, Hyochoong;Kim, Yun-young;Kim, Heesu;Lee, Yongseon;Choi, Sungho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.617-625
    • /
    • 2022
  • This study investigates the use of movable calibration target for gyroscopic and accelerometer bias compensation of inertial measurement units for firing lane alignment. Calibration source is detected with the help of vision sensor and its information in fused with other sensors on launcher for error correction. An algorithm is proposed and tested in simulation. It has been shown that it is possible to compensate sensor biases in firing launcher in few seconds by accurately estimating the location of calibration target in inertial frame of reference.

A Study on the development of Algorithm for Removing Noise from Road Crack Image (도로면 크랙영상의 노이즈 제거 알고리즘에 관한 연구)

  • Kim Jung-Ryeol;Lee Se-Jun;Choi Hyun-Ha;Kim Young-Suk;Lee Jun-Bok;Cho Moon-Young
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.535-538
    • /
    • 2002
  • Machine vision algorithms, which are composed of noise elimination algorithm, crack detection and mapping algorithm, and path planning algorithm, are required for sealing crack networks effectively and automation of crack sealing.. Noise elimination algorithm is the first step so that computer take cognizance of cracks effectively. Noises should be removed because common road includes a lot of noises(mark of oil, tire, traffic lane, and sealed crack) that make it difficult the computer to acknowledge cracks accurately. The objective of this paper is to propose noise elimination algorithm, prove the efficiency of the algorithm through coding. The result of the coding is represented in this paper as well.

  • PDF

A Study on the Spacing Distrubution based on Relative Speeds between Vehicles -Focused on Uninterrupted Traffic Flow- (차량간 상대속도에 따른 차두거리 분포에 관한 연구 -연속류 교통흐름을 중심으로-)

  • Ma, Chang-Young;Yoon, Tae-Kwan;Kim, Byung-Kwan
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • This study analyzes traffic data which are collected by VDS(Vehicle Detection System) to research the relationship between spacing distribution and vehicles' relative speed. The collected data are relative speed between preceding and following vehicles, passing time and speed. They are also classified by lane and direction. For the result of the analysis, in the same platoon, we figure out that mean of spacing is 40m, which can be a value to determine section A to D. To compare spacing according to time interval, this study splits time intervals to peak hour and non-peak hour by peak hour traffic volume. In conclusion, vehicles in peak hour are in car following because most drive similar speed as preceding vehicle and they have relatively small spacing. On the other hand, non-peak hour's spacing between vehicles is bigger than that of peak hour. This implies driver's behaviors that the less spacing, the more aggressive and want to reduce their travel time in peak hour, whereas most drive easily in non-peak hour and recreational trip purpose because of less time pressure.