• Title/Summary/Keyword: 차선이탈검지

Search Result 3, Processing Time 0.074 seconds

Evaluating Effectiveness of Lane Departure Warning System by User Perceptions (차선이탈경고장치(LDWS) 이용자 만족도 평가 연구)

  • Joo, Shin-Hye;Oh, Cheol;Lee, Jae-Wan;Lee, Eun-Deok
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.2
    • /
    • pp.43-52
    • /
    • 2012
  • A lane departure warning system (LDWS) is an effective technology-based countermeasure for preventing traffic crashes as it provides warning information to drivers. Understanding the characteristics of perception and satisfaction levels on LDWS is fundamental for deriving better performance and functionality enhancements of the system. The purpose of this study is to evaluate the user satisfaction of LDWS. A survey to collect user perception and user preference data was conducted. Both cross-tabulation analysis and binary logistic regression technique were adopted to identify the factors affecting user satisfaction for LDWS. The results revealed that the accuracy and timeliness of warning information was significant for evaluating the effectiveness of LDWS. In particular, the warning accuracy at a curve segment on the road was the most dominant factor affecting user satisfaction. The outcome of this study would be valuable in evaluating and designing LDWS functionalities.

Detecting Lane Departure Based on GIS Using DGPS (DGPS를 이용한 GIS기반의 차선 이탈 검지 연구)

  • Moon, Sang-Chan;Lee, Soon-Geul;Kim, Jae-Jun;Kim, Byoung-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.16-24
    • /
    • 2012
  • This paper proposes a method utilizing Differential Global Position System (DGPS) with Real-Time Kinematic (RTK) and pre-built Geo-graphic Information System (GIS) to detect lane departure of a vehicle. The position of a vehicle measured by DGPS with RTK has 18 cm-level accuracy. The preconditioned GIS data giving accurate position information of the traffic lanes is used to set up coordinate system and to enable fast calculation of the relative position of the vehicle within the traffic lanes. This relative position can be used for safe driving by preventing the vehicle from departing lane carelessly. The proposed system can be a key component in functions such as vehicle guidance, driver alert and assistance, and the smart highway that eventually enables autonomous driving supporting system. Experimental results show the ability of the system to meet the accuracy and robustness to detect lane departure of a vehicle at high speed.

A Study on the Preemption Control Strategies Considering Queue Length Constraints (대기행렬길이 제약조건을 고려한 Preemption 제어 전략에 관한 연구)

  • Lee, Jae-Hyeong;Lee, Sang-Su;O, Yeong-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.179-187
    • /
    • 2009
  • Currently, the signalized intersections in Korea are operated without providing an emergency vehicle preemption control strategy. Thus, it might threaten the safety of the pedestrians and drivers on highways when an emergency vehicle faces congested traffic conditions. The existing preemption control is activated when an emergency vehicle is detected along a path. This enables emergency vehicles to progress uninterrupted, but it also increases the delay of other vehicles. In this paper, a revised preemption control strategy considering queue length restrictions is proposed to make both a progressive movement of an emergency vehicle and reduce delay of other vehicles simultaneously. By applying the preemption control strategy through a simulation study, it was shown that delay of an emergency vehicle decreased to 44.3%-96.1% and speed increased to 8.8%-42.0% in all 9 cases as compared with a conventional signal control. The existing preemption control is superior for oversaturated conditions (v/c >1.0) or a link length less than 200m. However, the preemption control considering queue length constraints shows better performance than the existing preemption control when the v/c is less than 0.8 and a link length is longer than 500m.