• Title/Summary/Keyword: 차분 진화법

Search Result 14, Processing Time 0.01 seconds

Differential Evolution using Random Key Representation for Travelling Salesman Problems (외판원 문제를 위한 난수 표현법을 이용한 차분진화 알고리즘)

  • Lee, Sangwook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2012.05a
    • /
    • pp.63-64
    • /
    • 2012
  • 차분진화 알고리즘은 Storn 과 Price에 의해 제안된 메타휴리스틱 알고리즘이다. 본 논문에서는 외판원 문제를 해결하기 위한 차분진화 알고리즘을 소개한다. 차분진화 알고리즘은 실수 문제를 위한 알고리즘이므로 외판원 문제를 해결하기 위해 난수 키 표현법을 적용한다. OR Library의 표준 외판원 문제에 적용한 결과 제안한 알고리즘은 외판원 문제 해결에 가능성이 있음을 보여주었다.

  • PDF

Differential Evolution Algorithm based on Random Key Representation for Traveling Salesman Problems (외판원 문제를 위한 난수 키 표현법 기반 차분 진화 알고리즘)

  • Lee, Sangwook
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.11
    • /
    • pp.636-643
    • /
    • 2020
  • The differential evolution algorithm is one of the meta-heuristic techniques developed to solve the real optimization problem, which is a continuous problem space. In this study, in order to use the differential evolution algorithm to solve the traveling salesman problem, which is a discontinuous problem space, a random key representation method is applied to the differential evolution algorithm. The differential evolution algorithm searches for a real space and uses the order of the indexes of the solutions sorted in ascending order as the order of city visits to find the fitness. As a result of experimentation by applying it to the benchmark traveling salesman problems which are provided in TSPLIB, it was confirmed that the proposed differential evolution algorithm based on the random key representation method has the potential to solve the traveling salesman problems.

Random key representation based differential evolution for resource constrained project scheduling problem (자원 제약이 있는 프로젝트 스케줄링 문제를 위한 난수 키 표현법 기반 차분진화알고리즘)

  • Lee, sangwook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.63-64
    • /
    • 2016
  • 자원 제약이 있는 프로젝트 스케줄링 문제는 NP-hard인 순서기반 문제이다. 본 논문에서는 연속적인 문제 해결에 적합한 차분진화알고리즘에 난수 키 표현법을 적용하여 순서기반 표현을 가능하게 하여 자원 제약이 있는 프로젝트 스케줄링 문제를 해결하고자 한다. 실험 결과 작은 규모의 자원 제약이 있는 프로젝트 문제에 적용하여 난수 키 표현법 기반 차분진화알고리즘의 가능성을 보았다.

  • PDF

Function Optimization and Event Clustering by Adaptive Differential Evolution (적응성 있는 차분 진화에 의한 함수최적화와 이벤트 클러스터링)

  • Hwang, Hee-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.451-461
    • /
    • 2002
  • Differential evolution(DE) has been preyed to be an efficient method for optimizing real-valued multi-modal objective functions. DE's main assets are its conceptual simplicity and ease of use. However, the convergence properties are deeply dependent on the control parameters of DE. This paper proposes an adaptive differential evolution(ADE) method which combines with a variant of DE and an adaptive mechanism of the control parameters. ADE contributes to the robustness and the easy use of the DE without deteriorating the convergence. 12 optimization problems is considered to test ADE. As an application of ADE the paper presents a supervised clustering method for predicting events, what is called, an evolutionary event clustering(EEC). EEC is tested for 4 cases used widely for the validation of data modeling.

Observation of Bargaining Game using Co-evolution between Particle Swarm Optimization and Differential Evolution (입자군집최적화와 차분진화알고리즘 간의 공진화를 활용한 교섭게임 관찰)

  • Lee, Sangwook
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.549-557
    • /
    • 2014
  • Recently, analysis of bargaining game using evolutionary computation is essential issues in field of game theory. In this paper, we observe a bargaining game using co-evolution between two heterogenous artificial agents. In oder to model two artificial agents, we use a particle swarm optimization and a differential evolution. We investigate algorithm parameters for the best performance and observe that which strategy is better in the bargaining game under the co-evolution between two heterogenous artificial agents. Experimental simulation results show that particle swarm optimization outperforms differential evolution in the bargaining game.

Tensile Force Estimation of Externally Prestressed Tendon Using SI technique Based on Differential Evolutionary Algorithm (차분 진화 알고리즘 기반의 SI기법을 이용한 외부 긴장된 텐던의 장력추정)

  • Noh, Myung-Hyun;Jang, Han-Taek;Lee, Sang-Youl;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.9-18
    • /
    • 2009
  • This paper introduces the application of DE (Differential Evolutionary) method for the estimation of tensile force of the externally prestressed tendon. The proposed technique, a SI (System Identification) method using the DE algorithm, can make global solution search possible as opposed to classical gradient-based optimization techniques. The numerical tests show that the proposed technique employing DE algorithm is a useful method which can detect the effective nominal diameters as well as estimate the exact tensile forces of the externally prestressed tendon with an estimation error less than 1% although there is no a priori information about the identification variables. In addition, the validity of the proposed technique is experimentally proved using a scale-down model test considering the serviceability state condition without and with the loss of the prestressed force. The test results prove that the technique is a feasible and effective method that can not only estimate the exact tensile forces and detect the effective nominal diameters but also inspect the damping properties of test model irrespective of the loss of the prestressed force. The 2% error of the estimated effective nominal diameter is due to the difference between the real tendon diameter with a wired section and the FE model diameter with a full-section. Finally, The accuracy and superiority of the proposed technique using the DE algorithm are verified through the comparative study with the existing theories.

The Optimization of Fuzzy Prototype Classifier by using Differential Evolutionary Algorithm (차분 진화 알고리즘을 이용한 Fuzzy Prototype Classifier 최적화)

  • Ahn, Tae-Chon;Roh, Seok-Beom;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.161-165
    • /
    • 2014
  • In this paper, we proposed the fuzzy prototype pattern classifier. In the proposed classifier, each prototype is defined to describe the related sub-space and the weight value is assigned to the prototype. The weight value assigned to the prototype leads to the change of the boundary surface. In order to define the prototypes, we use Fuzzy C-Means Clustering which is the one of fuzzy clustering methods. In order to optimize the weight values assigned to the prototypes, we use the Differential Evolutionary Algorithm. We use Linear Discriminant Analysis to estimate the coefficients of the polynomial which is the structure of the consequent part of a fuzzy rule. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.

Analysis for Applicability of Differential Evolution Algorithm to Geotechnical Engineering Field (지반공학 분야에 대한 차분진화 알고리즘 적용성 분석)

  • An, Joon-Sang;Kang, Kyung-Nam;Kim, San-Ha;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.4
    • /
    • pp.27-35
    • /
    • 2019
  • This study confirmed the applicability to the field of geotechnical engineering for relatively complicated space and many target design variables in back analysis. The Sharan's equation and the Blum's method were used for the tunnel field and the retaining wall as a model for the multi-variate problem of geotechnical engineering. Optimization methods are generally divided into a deterministic method and a stochastic method. In this study, Simulated Annealing Method (SA) was selected as a deterministic method and Differential Evolution Algorithm (DEA) and Particle Swarm Optimization Method (PSO) were selected as stochastic methods. The three selected optimization methods were compared by applying a multi-variate model. The problem of deterministic method has been confirmed in the multi-variate back analysis of geotechnical engineering, and the superiority of DEA can be confirmed. DEA showed an average error rate of 3.12% for Sharan's solution and 2.23% for Blum's problem. The iteration number of DEA was confirmed to be smaller than the other two optimization methods. SA was confirmed to be 117.39~167.13 times higher than DEA and PSO was confirmed to be 2.43~6.91 times higher than DEA. Applying a DEA to the multi-variate back analysis of geotechnical problems can be expected to improve computational speed and accuracy.

An Improved MAP-Elites Algorithm via Rotational Invariant Operator in Differential Evolution for Continuous Optimization (연속 최적화를 위한 개선된 MAP-Elites 알고리즘)

  • Tae Jong Choi
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.129-135
    • /
    • 2024
  • In this paper, we propose a new approach that enhances the continuous optimization performance of the MAP-Elites algorithm. The existing self-referencing MAP-Elites algorithm employed the "DE/rand/1/bin" operator from the differential evolution algorithm, which, due to its lack of rotational invariance, led to a degradation in optimization performance when there were high correlations among variables. The proposed algorithm replaces the "DE/rand/1/bin" operator with the "DE/current-to-rand/1" operator. This operator, possessing rotational invariance, ensures robust performance even in cases where there are high correlations among variables. Experimental results confirm that the proposed algorithm performs better than the comparison algorithms.

Optimization of tunnel support patterns using DEA (차분진화 알고리즘을 적용한 터널 지보패턴 최적화)

  • Kang, Kyung-Nam;An, Joon-Sang;Kim, Byung-Chan;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.211-224
    • /
    • 2018
  • It is important to design tunnel support system considering the various loads acting on the tunnel because they have a direct impact on the stability of tunnels. In Korea, standardized support patterns are defined based on the rock mass classification system depending on the project, and it is stated that it should be modified appropriately considering the behavior of tunnel during construction. In this study, the tunnel support pattern optimization method is suggested based on the convergence-confinement method, earth pressure, axial force of rock bolt, and moment acting on the shotcrete. The length and spacing of the rock bolts and the thickness of the shotcrete were optimized by using the differential evolution algorithm (DEA) and the results were compared to the standard support pattern III for railway tunnel. Rock bolt length can be reduced and the installation interval can be widened for shallow tunnel. As the depth of tunnel increases, the thickness of shotcrete increases linearly. Therefore, the thickness of shotcrete should be thicker than the standard support pattern as the depth of tunnel increases to secure the stability of tunnel.