• Title/Summary/Keyword: 차분법

Search Result 1,119, Processing Time 0.03 seconds

On the Use of Modal Derivatives for Reduced Order Modeling of a Geometrically Nonlinear Beam (모드 미분을 이용한 기하비선형 보의 축소 모델)

  • Jeong, Yong-Min;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.329-334
    • /
    • 2017
  • The structures, which are made up with the huge number of degrees-of-freedom and the assembly of substructures, have a great complexity. In order to increase the computational efficiency, the analysis models have to be simplified. Many substructuring techniques have been developed to simplify large-scale engineering problems. The techniques are very powerful for solving nonlinear problems which require many iterative calculations. In this paper, a modal derivatives-based model order reduction method, which is able to capture the stretching-bending coupling behavior in geometrically nonlinear systems, is adopted and investigated for its performance evaluation. The quadratic terms in nonlinear beam theory, such as Green-Lagrange strains, can be explained by the modal derivatives. They can be obtained by taking the modal directional derivatives of eigenmodes and form the second order terms of modal reduction basis. The method proposed is then applied to a co-rotational finite element formulation that is well-suited for geometrically nonlinear problems. Numerical results reveal that the end-shortening effect is very important, in which a conventional modal reduction method does not work unless the full model is used. It is demonstrated that the modal derivative approach yields the best compromised result and is very promising for substructuring large-scale geometrically nonlinear problems.

Seismic wave propagation through surface basalts - implications for coal seismic surveys (지표 현무암을 통해 전파하는 탄성파의 거동 - 석탄 탄성파탐사에 적용)

  • Sun, Weijia;Zhou, Binzhong;Hatherly, Peter;Fu, Li-Yun
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Seismic reflection surveying is one of the most widely used and effective techniques for coal seam structure delineation and risk mitigation for underground longwall mining. However, the ability of the method can be compromised by the presence of volcanic cover. This problem arises within parts of the Bowen and Sydney Basins of Australia and seismic surveying can be unsuccessful. As a consequence, such areas are less attractive for coal mining. Techniques to improve the success of seismic surveying over basalt flows are needed. In this paper, we use elastic wave-equation-based forward modelling techniques to investigate the effects and characteristics of seismic wave propagation under different settings involving changes in basalt properties, its thickness, lateral extent, relative position to the shot position and various forms of inhomogeneity. The modelling results suggests that: 1) basalts with high impedance contrasts and multiple flows generate strong multiples and weak reflectors; 2) thin basalts have less effect than thick basalts; 3) partial basalt cover has less effect than full basalt cover; 4) low frequency seismic waves (especially at large offsets) have better penetration through the basalt than high frequency waves; and 5) the deeper the coal seams are below basalts of limited extent, the less influence the basalts will have on the wave propagation. In addition to providing insights into the issues that arise when seismic surveying under basalts, these observations suggest that careful management of seismic noise and the acquisition of long-offset seismic data with low-frequency geophones have the potential to improve the seismic results.

Evaluation and interpretation of the effects of heterogeneous layers in an OBS/air-gun crustal structure study (OBS/에어건을 이용한 지각구조 연구에서 불균질층의 영향에 대한 평가와 해석)

  • Tsuruga, Kayoko;Kasahara, Junzo;Kubota, Ryuji;Nishiyama, Eiichiro;Kamimura, Aya;Naito, Yoshihiro;Honda, Fuminori;Oikawa, Nobutaka;Tamura, Yasuo;Nishizawa, Azusa;Kaneda, Kentaro
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • We present a method for interpreting seismic records with arrivals and waveforms having characteristics which could be generated by extremely inhomogeneous velocity structures, such as non-typical oceanic crust, decollement at subduction zones, and seamounts in oceanic regions, by comparing them with synthetic waveforms. Recent extensive refraction and wide-angle reflection surveys in oceanic regions have provided us with a huge number of high-resolution and high-quality seismic records containing characteristic arrivals and waveforms, besides first arrivals and major reflected phases such as PmP. Some characteristic waveforms, with significant later reflected phases or anomalous amplitude decay with offset distance, are difficult to interpret using only a conventional interpretation method such as the traveltime tomographic inversion method. We find the best process for investigating such characteristic phases is to use an interactive interpretation method to compare observed data with synthetic waveforms, and calculate raypaths and traveltimes. This approach enables us to construct a reasonable structural model that includes all of the major characteristics of the observed waveforms. We present results here with some actual observed examples that might be of great help in the interpretation of such problematic phases. Our approach to the analysis of waveform characteristics is endorsed as an innovative method for constructing high-resolution and high-quality crustal structure models, not only in oceanic regions, but also in the continental regions.

Analysis on the Effect of the Urban Park Development on Change of Urban Spatial Structures - Focused on Gentrification around Seoul Forestry Park in Seongdong-gu - (도시공원 조성이 도시공간구조 변화에 미치는 영향 분석 - 성동구 서울숲 젠트리피케이션 현상을 중심으로 -)

  • Moon, Seung-Woon;Kim, Euijune;Ku, Jin-Hyuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.2
    • /
    • pp.76-88
    • /
    • 2017
  • The urban park plays important roles in protecting the urban landscape and improving citizens' health, recreation, and the emotional life. Above and beyond these roles, the urban park is expected to rearrange urban spatial structures as a kind of urban system. The purpose of this paper is to identify empirically to change urban spatial structures by construction of the urban park. This study regards gentrification around the urban park as a process to change urban spatial structures. The gentrification means the regeneration and upgrading of deteriorated urban property by the middle class or commercial developers. The site of case analysis is the Seoul Forestry Park in Sungdong-gu, Seoul. The Seoul Forestry Park is regarded as a representative urban park of Seoul, and caused gentrification around park after the 2005 opening. This study operationally defines the gentrification index and the accessibility index from an urban park and offers an empirical analysis of relation among the urban park, the gentrification and urban spatial structure in a statistic district which is the minimum unit of Korean statistic data in 2000, 2005, and 2010, using Difference-in-Difference method and linear probability model. The results of this empirical study show that the Seoul Forestry Park changes urban spatial structures by gentrification. It reverses a trend of migration of gentrifiers before and after construction of the Seoul Forestry Park. It suggests urban park construction as an alternative method for urban regeneration by inducing the middle class into the inner city of Seoul.

Psychological Stability Color for The Fire Escape Mobile App (심리적 안정감을 주는 화재 피난 모바일 앱(App) 컬러연구)

  • Lee, Sang ki;Park, Hae Rim
    • Journal of Service Research and Studies
    • /
    • v.12 no.2
    • /
    • pp.106-116
    • /
    • 2022
  • As part of the Fire Evacuation Service scenario using mobile applications, this study aims to find the appropriate colors to be used in the interface of the application and to define and apply colors that can positively and reliably affect human unstable psychology in the course of evacuating the room in case of fire. In the situation of fire, proper design and placement of the colored escape guidance interface is important, taking into account the psychology of the occupants. However, literature and previous research have shown that colors used to induce evacuation are not suitable for effective evacuation in case of fire. In this study, the purpose of the study was to provide a color that would provide psychological stability in the event of a evacuation in consideration of the psychological issues of those who are still in need of shelter, and to use it to help induce an efficient evacuation in the event of a disaster. Using the image evaluation method, the form and color of images have been derived through frequency analysis to a number of unspecified people, and the main and secondary colors of images were analyzed through KSCA color analysis. Finally, the final application color was constructed through mutual verification between the results by comparing and analyzing the colors obtained through the image evaluation analysis results and the KSCA color analysis results. The results of the study showed that the green line can help stabilize the human mind through comparative analysis with prior research. Therefore, the main color for guiding calm and calm applications in case of fire escape is proposed in the green line. In this study, the experiment with image evaluation cannot accurately measure the effect of factors on color among complex factors. A subsequent study of this will help quantify images if it allows the subject matter of color and image to be defined to some extent through factor analysis.

Numerical Studies on Bearing Capacity Factor Nγ and Shape Factor of Strip and Circular Footings on Sand According to Dilatancy Angle (모래지반에서 팽창각에 따른 연속기초와 원형기초의 지지력계수 Nγ와 형상계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choi, Jaehyung;Lee, Jin-Sun;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.49-63
    • /
    • 2014
  • Bearing capacity factor $N_{\gamma}$ and shape factor were studied for rigid strip and circular footings with a rough base on sand by numerical modelling considering the effect of dilation angle. The numerical model was developed with an explicit finite difference code. Loading procedures and interpretation methods were devised in order to shorten the running time while eliminating the exaggeration of the reaction caused by the explicit scheme. Using the Mohr-Coulomb plasticity model with associated (${\psi}={\phi}$) and nonassociated (${\psi}$ < ${\phi}$) flow-rules, the bearing capacity factor $N_{\gamma}$ was evaluated for various combinations of internal friction angles and dilation angles. Bearing capacity factor decreased as the dilation angle was reduced from the associated condition. An equation applicable to typical sands was proposed to evaluate the relative bearing capacity for the nonassociated condition compared to the associated condition on which most bearing capacity factor equations are based. The shape factor for the circular footing varied substantially when the plane-strain effect was taken into account for the strip footing. The numerical results of this study showed closer trends with the previous experimental results when the internal friction angle was increased for the strip footing. Discussions are made on the reason that previous equations for the shape factor give different results and recommendations are made for the appropriate design shape factor.

A Study on Shape Optimum Design for Stability of Elastic Structures (탄성 구조물의 안정성을 고려한 형상최적설계)

  • Yang, Wook-Jin;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • This paper addresses a method for shape optimization of a continuous elastic body considering stability, i.e., buckling behavior. The sensitivity formula for critical load is analytically derived and expressed in terms of shape variation, based on the continuum formulation of the stability problem. Unlike the conventional finite difference method (FDM), this method is efficient in that only a couple of analyses are required regardless of the number of design parameters. Commercial software such as ANSYS can be employed since the method requires only the result of the analysis in computation of the sensitivity. Though the buckling problem is more efficiently solved by structural elements such as a beam and shell, elastic solids have been chosen for the buckling analysis because solid elements can generally be used for any kind of structure whether it is thick or thin. Sensitivity is then computed by using the mathematical package MATLAB with the initial stress and buckling analysis of ANSYS. Several problems we chosen in order to illustrate the efficiency of the presented method. They are applied to the shape optimization problems to minimize weight under allowed critical loads and to maximize critical loads under same volume.

A numerical simulation of propagating turbidity currents using the ULTIMATE scheme (ULTIMATE 기법을 이용한 부유사 밀도류 전파 수치모의)

  • Choi, Seongwook;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.1
    • /
    • pp.55-64
    • /
    • 2017
  • This study presents a numerical model for simulating turbidity currents using the ULTIMATE scheme. For this, the layer-averaged model is used. The model is applied to laboratory experiments, where the flume is composed of sloping and flat parts, and the characteristics of propagating turbidity currents are investigated. Due to the universal limiter of the ULTIMATE scheme, the frontal part of the turbidity currents at a sharp gradient without numerical oscillations is computed. Simulated turbidity currents propagate super-critically to the end of the flume, and internal hydraulic jumps occur at the break-in-slope after being affected by the downstream boundary. It is found that the hydraulic jumps are computed without numerical oscillations if Courant number is less than 1. In addition, factors that affect propagation velocity of turbidity currents is studied. The particle size less than $9{\mu}m$ does not affect propagation velocity but the buoyancy flux affects clearly. Finally, it is found that the numerical model computes the bed elevation change due to turbidity currents properly. Specifically, a discontinuity in the bed elevation, arisen from the hydraulic jumps and resulting difference in sediment entrainment, is observed.

An Empirical Analysis on the Production and Price Effect by Agricultural Disaster Insurance (농업재해보험의 생산량 및 가격 효과에 관한 실증분석)

  • Han, Sungmin
    • KDI Journal of Economic Policy
    • /
    • v.36 no.4
    • /
    • pp.135-169
    • /
    • 2014
  • This study empirically analyzes changes in production patterns of farmers by agricultural disaster insurance. The aim of this project is to achieve stability of farm management by paying insurance in case of a natural disaster. However, it causes farmers to change production patterns in the direction of increasing production, and leads the crop price to drop. This can be explained by producers' risk reduction through the disaster insurance. The empirical analysis is based on IV approach with using two stage least squares method. The first stage estimates by difference-in-differences methodology indicate that the production of insurable crops increases more about 80,000ton on average than that of non-insurable crops. In addition, to solve the endogeneity problem caused by general supply and demand model, I use the first stage estimates and find that the price index of the crops drops about 2.3% according to the production increase by 10,000ton. The credibility of these results is also attained by various robustness checks. These findings suggest that it is necessary for government to analyze the whole economy which consists of producer and consumer welfare when it determines the policy. Besides, it implies that it is essential to develop a new market to cope with the unintended effect.

  • PDF

Development of Three-Dimensional Cohesive Sediment Transport Model and Diffusion of Suspended Sediment at Suyoung Bay (3차원 점성토(粘性土) 운송(運送) 모델의 개발(開發)과 수영만(水營灣)의 부유물질 확산)

  • Kim, Cha Kyum;Lee, Jong Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.179-192
    • /
    • 1993
  • Three-dimensional cohesive sediment transport model, COSETM-3, is develpoed using a finite difference method. The model results are compared with the physical experimental results for the relative concentration with time at the mid-depth of the recirculating flume and are found to be in good agreement. This model is applied to Suyoung Bay in Pusan of Korea to verify the field applicability of the model and to investigate on the SS (suspended solids) diffusion phenomena at the bay. Behaviors of discharging SS from Suyoung River at normal river flow and flood river flow are predicted. The numerical results appear to be reasonable and qualitative agreement with field data. The influence of settling velocity on the concentration distribution of SS is also investigated. In case of not considering settling velocity, SS concentration at surface layer is higher than that at lower layer, but in case of considering settling velocity, SS concentration at lower layer is higher than that at surface layer. The fluctuation of SS concentration at surface layer is large due to the strong mixing, but the fluctuation of the concentration at lower layer is small due to the weak mixing. SS diffusion patterns at flood river flow are similar to those at normal river flow, while the concentration at that flow is so much higher than that at this flow. SS concentration increases with time until the peak discharge occurs, but the concentration decreases with time with decreasing river flow after the peak discharge.

  • PDF