• Title/Summary/Keyword: 차륜/레일 인터페이스

Search Result 4, Processing Time 0.022 seconds

Experimental Analysis of Wheel Radiation Noise of HANVIT 200 Train in Curve Lines (곡선부에서의 한빛 200 열차 차륜방사 소음 특성)

  • Lee, Chan-Woo;Kim, Jae-Chul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.907-910
    • /
    • 2008
  • The wheel radiation noise characteristic of Korean tilting train(Hanvit 200) on curved rail under the field test conditions is analyzed in this paper. The test railroad track was selected from Seodaejon to Songjeongri in Honam line. $5^{th}$ and $6^{th}$ car are decided to measure radiation noise level among a train of six cars. The test subject curve radius executed from R400, R500, R600, R700 and R800 segments. The speed of test trains when from R600 and R800 curves existing operation speed and speed up 20% of existing speed. On curved rail at the time of operation speed of Hanvit 200 trains from below 95km/h wheel radiation noise level at $94dBA{\sim}99dBA$, the operation speed from between $100km/h{\sim}144km/h$ wheel radiation noise level at $100dBA{\sim}106dBA$.

  • PDF

Measuring Technique For Acoustic Roughness of Rail Surface With Homogeneous Displacement Sensors (동일 변위센서를 사용한 레일표면 음향조도의 측정방법)

  • Jeong, Wootae;Jang, Seungho;Kho, Hyo-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7941-7948
    • /
    • 2015
  • Rolling noises during train operation are caused by vibration excited from irregularities of surface roughness between wheel and rail. Therefore, a proper measurement and analysis techniques of acoustic roughness between wheel and rail surface are required for transmission, prediction, and analysis of the train rolling noise. However, since current measuring devices and methods use trolley-based manual handling devices, the measurements induce unstable measuring speed and vibrational interface that increases errors and disturbances. In this paper, a new automatic rail surface exploring platform with a speed controller has been developed for improving measurement accuracy and reducing inconsistency of measurements. In addition, we propose a data integration method of the rail surface roughness with multiple homogeneous displacement sensors and verified the accuracy of the integrated data through standard test-bed railway track investigation.