• Title/Summary/Keyword: 차량-도로간 통신

Search Result 205, Processing Time 0.025 seconds

Development of Network Equipment Based on V2X System for Automatic Intersection Traffic Signal Control (V2X 시스템 기반 교차로 네트워크 자동 신호시스템 개발에 관한 연구)

  • Oh, Jeakon;Kim, Hyungjin;Kang, JeongJin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.173-177
    • /
    • 2016
  • Korea, the traffic and transportation problems are significant because private cars are increasing constantly. Therefore, it is imperative to improve traffic condition so as to solve the problems such as traffic congestion and accidents which may occur due to the increase of vehicles in a limited area through the signal control. However, the current operating system for traffic control cannot provide car users the optimal signal but it generates a time delay of vehicles, traffic congestions etc. In this paper, we propose and implement the system based on V2X based automatic controller, which reduces the waste of time and the driver's psychological stress on the road intersection.

Measuring Technologies of Traffic Conflict Risk between Vehicles and Pedestrians (차량-보행자간의 상충위험도 측정 기술 연구)

  • Jang, Jeong-Ah;Lee, Hyeon-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.2
    • /
    • pp.255-260
    • /
    • 2017
  • In Korea, traffic accidents between pedestrians and vehicles in 2015 account for 38.8% of all accidents. This study proposes a system design that can measure the risk of conflict between a vehicle and a pedestrian. Firstly the systemdetect and estimate the position, speed, and directional data of the vehicle and the pedestrian. And then it estimate the conflict point between a vehicle and a pedestrian. The risk of conflict is quantified by estimating the pedestrian safety margin (PSM), which is the time difference between the arrival of the pedestrian at the crossing point to the point of conflict and the vehicle approaching the point. In this system each data is acquired through an external monitoring based evaluation module and an individual wearing module. In the future, such a system can be used for decision making such as the design of road hazard improvement facilities and the designation of the elderly protection area.

A study on building the platform and development of algorithm for collecting real-time traffic data (실시간 교통정보 수집을 위한 알고리즘 개발 및 플랫폼 구축에 관한 연구)

  • Kim, Dong-Min;Jeong, Young-Mu;Min, Soo-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.535-538
    • /
    • 2012
  • Recently active research for ITS(Intelligent Transportation System) helps to build for next generation traffic information system at information society. Build the system for sensing a vehicle speed and traffic information on the road. Provide collected data to driver, flow of overall traffic impacts have a good influence. In this study, research for building the platform and development algorithm that provided from other source processing real-time traffic data provides a more reliable real-time traffic data.

  • PDF

Vehicle control system base on the low power long distance communication technology(NB-IoT)

  • Kim, Sam-Taek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.6
    • /
    • pp.117-122
    • /
    • 2022
  • In this paper, we developed a vehicle control terminal using IoT and low-power long-distance communication (NB-IoT) technology. This system collects information on the location and status of a parked vehicle, and transmits the vehicle status to the vehicle owner's terminal in real time with low power to prevent vehicle theft, and in the case of a vehicle in motion, When primary information about the vehicle, such as an impact, is collected and transmitted to the server, the server analyzes the relevant data to generate secondary information on traffic congestion, road damage, and safety accidents. By sending it, you can know the exact arrival time of the vehicle at its destination. This terminal device is an IoT gateway for a vehicle and can be connected to various wired and wireless sensors inside the vehicle. In addition, the data collected from vehicle maintenance, efficient operation, and vehicles can be usefully used in the private or public sector.

The traffic management system for Emergency Vehicles based on DSRC System (DSRC 시스템 기반의 긴급차량을 위한 교통 관리 시스템)

  • Choi Kwang-Joo;Kim Dae-Hyuk;Yoon Dong-Weon;Park Sang-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.40-48
    • /
    • 2006
  • In this paper, we propose the EPTS(Emergency vehicle Priority Transit system) for a rapid drive or emergency vehicles at the crossroads. The EPTS is one part of real-time traffic management system in the advanced traffic management system. The EPTS needs the connection or a traffic control system and a DSRC system. It can be applied to the real traffic situation considered with other traffic elements. As the result it is possible for the EPTS to nonstop drive because it induces an efficient drive of emergency vehicles. It is also relatively safe at the crossroad, it is expected that the EPTS is suitable for a telematics service which values efficiency above everything else.

A Simulation Model for Evaluating Demand Responsive Transit: Real-Time Shared-Taxi Application (수요대응형 교통수단 시뮬레이션 방안: Real-Time Shared-Taxi 적용예시)

  • Jung, Jae-Young
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.163-171
    • /
    • 2012
  • Demand Responsive Transit (DRT) services are becoming necessary as part of not only alternative transportation means for elderly and mobility impaired passengers, but also sustainable and flexible transportation options in urban area due to the development of communication technologies and Location Based Services (LBS). It is difficult to investigate the system performance regarding vehicle operational schemes and vehicle routing algorithms due to the lack of commercial software to support door-to-door vehicle simulation for larger area. This study proposes a simulation framework to evaluate innovative and flexible transit systems focusing on various vehicle routing algorithms, which describes data-type requirements for simulating door-to-door service on demand. A simulation framework is applied to compare two vehicle dispatch algorithms, Nearest Vehicle Dispatch (NVD) and Insertion Heuristic (IH) for real-time shared-taxi service in Seoul. System productivity and efficiency of the shared-taxi service are investigated, comparing to the conventional taxi system.

Integrated Management System for Vehicle CCTV Video Using Reverse Tunneling (리버스 터널링을 이용한 차량용 CCTV 영상 통합 관리 시스템)

  • Yang, Sun-Jin;Park, Jae-Pyo;Yang, Seung-Min
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.19-24
    • /
    • 2019
  • The development of ICT technology has a huge impact on the existing closed CCTV security equipment market. With the importance of video data particularly highlighted in areas such as self-driving cars, unmanned vehicles and smart cities, various technologies using video are emerging. In this paper, we proposed a method to transmit videos and metadata as a part of smart city integration, and to solve the traffic, environment and security problems caused in urban life by utilizing the metadata instead of using CCTV videos for simple recording purposes, and reverse tunneling technique was designed and implemented as a method for accessing CCTV videos for vehicles from remote locations. Integrated management of CCTV videos and metadata for vehicles that have been used only for limited purposes in closed environments will enable efficient operation of integrated centers in real time required by smart cities, such as vehicle status check, road conditions and facility management.

Efficient Implementation of FMCW Radar Signal Processing Parts Using Low Cost DSP (저가형 DSP를 사용하는 FMCW 레이더 신호처리부의 효율적 구현 방안)

  • Oh, Woojin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.707-714
    • /
    • 2016
  • Active driving safety systems for vehicle, such as the front collision avoidance, lane departure warning, and lane change assistance, have been popular to be adopted to the compact car. For improving performance and competitive cost, FMCW radar has been researched to adopt a phased array or a multi-beam antenna, and to integrate the front and the side radar. In this paper we propose several efficient methods to implement the signal processing module of FMCW radar system using low cost DSP. The pulse width modulation (PWM) based analog conversion, the approximation of time-eating functions, and the adoption of vector-based computation, etc, are proposed and implemented. The implemented signal processing board shows the real-time performance of 1.4ms pulse repetition interval (PRI) with 1024pt-FFT. In real road we verify the radar performance under real-time constraints of 10Hz update time.

Real-Time Traffic Information and Road Sign Recognitions of Circumstance on Expressway for Vehicles in C-ITS Environments (C-ITS 환경에서 차량의 고속도로 주행 시 주변 환경 인지를 위한 실시간 교통정보 및 안내 표지판 인식)

  • Im, Changjae;Kim, Daewon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.55-69
    • /
    • 2017
  • Recently, the IoT (Internet of Things) environment is being developed rapidly through network which is linked to intellectual objects. Through the IoT, it is possible for human to intercommunicate with objects and objects to objects. Also, the IoT provides artificial intelligent service mixed with knowledge of situational awareness. One of the industries based on the IoT is a car industry. Nowadays, a self-driving vehicle which is not only fuel-efficient, smooth for traffic, but also puts top priority on eventual safety for humans became the most important conversation topic. Since several years ago, a research on the recognition of the surrounding environment for self-driving vehicles using sensors, lidar, camera, and radar techniques has been progressed actively. Currently, based on the WAVE (Wireless Access in Vehicular Environment), the research is being boosted by forming networking between vehicles, vehicle and infrastructures. In this paper, a research on the recognition of a traffic signs on highway was processed as a part of the awareness of the surrounding environment for self-driving vehicles. Through the traffic signs which have features of fixed standard and installation location, we provided a learning theory and a corresponding results of experiment about the way that a vehicle is aware of traffic signs and additional informations on it.

Development and Comparison of Centralized and Decentralized ATIS Models with Simulation Method

  • Kim, Hoe-Kyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • Traffic congestion is a source of significant economic and social costs in urban areas. Intelligent Transportation Systems (ITS) are a promising means to help alleviate congestion by utilizing advanced sensing, computing, and communication technologies. This paper proposes and investigates a basic and advanced ITS framework Advanced Traveler Information System (ATIS) using wireless Vehicle to Roadside (Centralized ATIS model: CA model) and Vehicle to Vehicle (DeCentralized ATIS model: DCA model) communication and assuming an ideal communication environment in the typical $6{\times}6$ urban grid traffic network. Results of this study indicate that an ATIS using wireless communication can save travel time given varying combinations of system characteristics: traffic flow, communication radio range, and penetration ratio. Also, all tested metrics of the CA and DCA models indicate that the system performance of both models is almost identical regardless of varying traffic demand and penetration ratios. Therefore, DCA model can be a reasonable alternative to the fixed infrastructure based ATIS model (CA model).