The Journal of the Convergence on Culture Technology
/
v.4
no.3
/
pp.227-233
/
2018
In recent years, connected car, which has sensors and computers attached to vehicles used to detect the surrounding environment, has been actively studied. However, in order to configure the connected car environment, various sensors and roadside equipments are required to detect the surrounding environment of the vehicle, and also communication techniques for transmitting the collected data are in demands. Therefore, in this paper, the mobile virtual fence that collects and communicates the data of the surrounding environment through the sensor mounted on the mobile device is applied to the vehicles that were released before the connected car service environment was constructed, We propose a mechanism to receive the service and show the possibility through experiment.
Journal of the Korea Institute of Information and Communication Engineering
/
v.16
no.1
/
pp.153-159
/
2012
Driver's view has blind spot of automobile surroundings due to physical components of automobile architecture. Obstacles on blind spot are the cause of car destruction and car accidents. Cars which produced in recent have obstacle detection sensors and rear view cameras which provide information of obstacles on the blind sopt, and have also AVM(Around View Monitoring) which provides automobile surroundings for driver's safe driving. During a low-speed travel while parking or moving in a narrow street, a driver get help for safe driving by taking information of automobile surroundings using the above-mentioned devices. In this paper, we present a design and implementation of a 4-sided monitoring (4SM) system, which helps a driver see an integrated view of a vehicle's perimeter at a glance, using a car PC connected to four cameras installed on the front, rear, left, and right sides.
Proceedings of the Acoustical Society of Korea Conference
/
1998.06c
/
pp.51-54
/
1998
본 논문에서는 자동차 잡음 환경에서 녹음된 데이터 베이스를 이용하여 인식 시스템의 성능을 향상시키기 위한 효율적인 잡음 제거 방법을 연구하였다. 먼저, 잡음 및 주변 환경 변화에 강인한 것으로 알려져 있는 특징 벡터들의 인식 성능을 비교하교, 가중 켑스트랄 거리 측정 방법을 이용한 인식 실험을 통하여 시스템의 성능 향상을 확인하였다. 실험 결과, 본 논문에서 기준 시스템으로 사용한 LPC 켑스트럼의 경우에 비하여 MFCC나 root-cepstrum을 사용한 경우 인식률이 향상되었다. 켑스트럼간의 거리 측정에 있어서는 RPS와 BPL과 같은 가중 켑스트랄 거리 측정 함수들이 인식 성능 향상에 도움을 주었다. 또한 켑스트럼 평균 차감법이라는 간단한 잡음 제거기술을 적용하여 자동차 잡음 환경에서 인식 성능 향상을 보였다. 마지막으로, 차량 항법용 음성 인식 시스템의 실시간구현을 위하여 여러 경우의 인식 성능을 비교하고, 메모리 량과 실행 시간 등을 고려하여 최적 시스템을 제시하였다.
자동차 번호판 인식은 영상 내 검출한 차량의 번호판의 문자열을 인식하여 차량을 식별하고 추적하는 기술로 주변 환경에 의한 잡음, 왜곡과 차량의 움직임으로 발생한 흐림, 영상 입력 장치와의 물리적 거리 등에 강인해야 한다. 본 논문에서는 차량 움직임으로 발생한 흐림이 있는 저해상도 영상에 대한 번호판 인식 성능의 향상을 위해 디블러링 모델과 초해상화 모델을 이용한 영상 복원 방법을 제안한다. 실험을 통해 디블러링 모델과 초해상화 모델을 결합하여 흐림이 있는 저해상도 국내 번호판 영상에서의 인식 성능을 개선하였다.
Journal of the Institute of Electronics and Information Engineers
/
v.54
no.1
/
pp.55-69
/
2017
Recently, the IoT (Internet of Things) environment is being developed rapidly through network which is linked to intellectual objects. Through the IoT, it is possible for human to intercommunicate with objects and objects to objects. Also, the IoT provides artificial intelligent service mixed with knowledge of situational awareness. One of the industries based on the IoT is a car industry. Nowadays, a self-driving vehicle which is not only fuel-efficient, smooth for traffic, but also puts top priority on eventual safety for humans became the most important conversation topic. Since several years ago, a research on the recognition of the surrounding environment for self-driving vehicles using sensors, lidar, camera, and radar techniques has been progressed actively. Currently, based on the WAVE (Wireless Access in Vehicular Environment), the research is being boosted by forming networking between vehicles, vehicle and infrastructures. In this paper, a research on the recognition of a traffic signs on highway was processed as a part of the awareness of the surrounding environment for self-driving vehicles. Through the traffic signs which have features of fixed standard and installation location, we provided a learning theory and a corresponding results of experiment about the way that a vehicle is aware of traffic signs and additional informations on it.
Proceedings of the Korea Multimedia Society Conference
/
2001.06a
/
pp.20-23
/
2001
전자공학 기술의 응용으로 자동차를 지능화하고, 안정성을 현격하게 높이려는 연구가 주목받고 있다. 이러한 자동차의 지능화에서 중요한 요소 기술이 되는 것이, 자동차의 주변 즉 전방/후방의 차량이나 장애물을 인식하는 주변감시 기술이다. 본 논문에서는 이러한 자동차용 장애물 인식 레이더 시스템인 FMCW 레이더 신호처리시스템을 개발한다. 이 차량용 시스템이 실제 도로 환경에서 이용되기 위해서는 무엇보다 시스템의 안정된 신뢰도가 요구되며, 즉, 기상환경 및 다양한 도로환경에 무관하게 안정적인 시스템 신뢰도를 유지하기 위한 개발에 그 최종적인 목적이 있다. 이에 레이다 시스템을 통해 자차와의 거리 및 상대속도를 인지함으로서 최종적인 장애물(선행차, 교행차) 및 자차의 주행상황을 통해 안정적인 주행경보시스템을 개발한다.
Proceedings of the Korean Information Science Society Conference
/
2012.06d
/
pp.285-287
/
2012
근래 정부에서는 차량용 블랙박스의 필요성과 효율성을 인식해 모든 차량에 블랙박스(EDR, Event Data Recorder)를 의무적으로 장착하게 하고, 이를 통해 차량의 운행 정보와 상황을 모니터 및 관리를 할 수 있도록 정부 시책을 신설하고 이를 추진하고 있는 중이다. 특히 차량사고 발생시 이를 시뮬레이션하고 분석할 수 있는 자료가 매우 부족하다. 교통사고의 시뮬레이션 사고 차량의 운행정보뿐만 아니라 주변 운행환경 및 운행여건, 다른 차량의 간섭 등 매우 많은 정보가 필요하기 때문이다. 이에 본 논문에서는 블랙박스 간 Ad-hoc network을 이용해 차량의 정보를 공유 할 수 있는 시스템을 제안하고자 한다. 즉, 차량에서 돌발상황이 발생했을 때 발생 차량의 블랙박스 의 정보와 주변 운행하고 있는 차량에 장착되어 있는 블랙박스의 정보를 Ad-hoc network를 통해 사고 발생차량으로 수집, 이를 저장하고 추후사고에 대한 시뮬레이션 에서 이 데이터들을 통해 돌발상황 당시의 주변 차량 흐름과 다른 차량간의 간섭 및 돌발상황 유발 같은 현상을 조금 더 정확하게 시뮬레이션 함으로서 돌발상황에 대한 분석 및 판단에 도움을 줄 것이라 생각한다.
In this paper, an adaptive license plate recognition system which detects and recognizes license plate at real-time by using projected plane convolution and Decision Tree Classifier is proposed. And it was tested in circumstances which presence of complex background. Generally, in expressway tollgate or gateway of parking lots, it is very difficult to detect and segment license plate because of size, entry angle and noisy problem of vehicles due to CCD camera and road environment. In the proposed algorithm, we suggested to extract license plate candidate region after going through image acquisition process with inputted real-time image, and then to compensate license size as well as gradient of vehicle with change of vehicle entry position. The proposed algorithm can exactly detect license plate using accumulated edge, projected convolution and chain code labeling method. And it also segments letter of license plate using adaptive binary method. And then, it recognizes license plate letter by applying hybrid pattern vector method. Experimental results show that the proposed algorithm can recognize the front and rear direction license plate at real-time in the presence of complex background environments. Accordingly license plate detection rate displayed $98.8\%$ and $96.5\%$ successive rate respectively. And also, from the segmented letters, it shows $97.3\%$ and $96\%$ successive recognition rate respectively.
Recently, there have been many studies on object recognition around the vehicle and recognition of traffic signs and traffic lights in autonomous driving. In particular, such the recognition of traffic lights is one of the core technologies in autonomous driving. Therefore, many studies for such the recognition of traffic lights have been performed, the studies based on various deep learning models have increased significantly in recent. In addition, as a high-quality AI training data set for voice, vision, and autonomous driving is released on AIHub, it makes it possible to develop a recognition model for traffic lights suitable for the domestic environment using the data set. In this study, we developed a recognition model for traffic lights that can be used in Korea using the AIHub's training data set. In particular, in order to improve the recognition performance, we used various models of YOLOv4 and YOLOv5, and performed our recognition experiments by defining various classes for the training data. In conclusion, we could see that YOLOv5 shows better performance in the recognition than YOLOv4 and could confirm the reason from the architecture comparison of the two models.
최근 차량사고는 운전자의 운전 행동이 많은 비중을 차지하며 행동이 올바르지 못했을 경우 주의가 분산되어 사고가 발생하고 있다. 자동차 업계에서는 자율주행 기술의 출현으로 운전자의 운전환경이 변화되고 있다. 차량 서비스들은 차량에 부착된 센서들을 이용한 다양한 차량 서비스가 개발되고 있으며 차량 서비스는 도로주변 환경과 운전자의 안전에 집중된 서비스가 대부분이다. 하지만 차량에 부착된 센서들의 성능문제로 인한 기능적 문제점으로 상용화가 늦어지고 있다. 본 논문에서는 사용자에게 효율적인 차량 서비스를 제공하기 위해 사용자의 음성을 활용한 상품구매 시스템을 제안한다. 본 시스템은 딥 러닝 기술이 적용된 DB를 통해 사용자의 음성데이터 분류를 통해 상품을 검색 및 구매할 수 있는 시스템이다. 제안된 시스템은 음성인식을 활용하여 별도의 과정 없이 간편하게 상품을 구매할 수 있으며, 사고의 위험으로부터 벗어날 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.