• Title/Summary/Keyword: 차량배출가스

Search Result 252, Processing Time 0.029 seconds

Experimental study of NOx reduction in marine diesel engines by using wet-type exhaust gas cleaning system (선박용 디젤엔진의 NOx를 저감하기 위한 습식 배기가스 처리기술 적용에 관한 실험적 연구)

  • Ryu, Younghyun;Kim, Taewoo;Kim, Jungsik;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.216-221
    • /
    • 2017
  • Diesel engines have the highest brake thermal efficiency among internal combustion engines. Therefore, they are utilized in medium and large transportation vehicles requiring large amounts of power such as heavy trucks, ships, power generation systems, etc. However, diesel engines have a disadvantage of generating large quantities of nitrogen oxides during the combustion process. Therefore, the authors tried to reduce the amount of nitrogen oxides in marine diesel engines using a wet-type exhaust gas cleaning system utilizing the undivided electrolyzed seawater method. In this method, electrolyzed seawater in injected into the harmful gas discharge from the diesel engine using real seawater. The authors investigated the reduction of NO and NOx from the pH value, available chlorine concentration, and the temperature of electrolyzed seawater. The results of this experiment indicated that when the electrolyzed seawater is acidic, the NO oxidation rate in the oxidation tower is higher than that when the electrolyzed seawater has a neutral pH. Likewise, the NO oxidation rate increased with the increase in concentration of chlorine. Further, it was confirmed that the electrolyzed seawater temperature had no effect on the NO oxidation rate. Thus, the NOx exhaust emission value produced by the diesel engine was reduced by means of electrolyzed seawater treatment.

An Experimental Study of Fuel Economy and Emission Characteristics for a Heavy-Duty DME Bus (대형 DME버스의 연비 및 배기가스 특성에 관한 연구)

  • Oh, Yong-Il;Pyo, Young-Duk;Kwon, Ock-Bae;Beak, Young-Sun;Cho, Sang-Hyun;Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.371-376
    • /
    • 2012
  • The experimental test was conducted for a heavy-duty DME bus in JE-05 exhaust gas test mode using a chassis dynamometer, exhaust gas analyzers, and a PM measurement system. The heavy-duty DME bus was not equipped with after-treatment systems such as DOC or DPF. The dynamic behavior, emission characteristics, and fuel economy of the bus were investigated with an 8.0-liter, 6-cylinder conventional diesel engine. The results showed that the dynamic behavior in DME mode was almost the same as in diesel mode. However, there was little difference among the two operation modes for $NO_x$ and CO emissions. THC emissions were lower for DME mode than for diesel mode. Also, the amount of PM emissions was remarkably lower than for the diesel mode because DME contains a greater amount of oxygen than diesel. The data showed that $CO_2$ emissions were almost similar in the two modes but fuel economy (calculated using heating value) was lower for DME mode than for diesel mode.

Improvement of Leakage Performance of LPG Injector (LPG인젝터의 누설성능 향상에 관한 연구)

  • Kim, Changup;Shin, Moonsung;Baik, SeungKook
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.23-28
    • /
    • 2012
  • The LPG engine technology in Korea has made significant advances with the mass production of LPG vehicle with liquid phase LPG injection system, and have reached to satisfy the SULEV emission regulations. As of now, domestic production of LPG fuelled vehicles in Korea have reached more than 2.4 millions, which is the best in the world. But in the technical point of view, the key technologies for fuel injection system of LPG fuelled engine are mainly dependent on foreign license. Especially, fuel injector in the liquid phase LPG injection system has been imported from C company, which supplies LPG injector worldwide in the name of model D. In the context, it is quite urgent to develop the LPG injector technology in Korea. In this study, WCC coating which is key technology to develop LPG injector by reducing the fuel leakage was developed and tested. Considering the fuel leakage of 0.06cc/min in commercial LPG injector, fuel leakage was reduced down to 0.04cc/min with WCC coating technology and optimization of injector structure.

Economic Effects Analysis for Passenger Car's Idle Stop and Go Strategy: Focusing on Seoul Metropolitan Area (승용차 공회전제한장치 장착전략의 경제효과분석: 수도권 지역을 대상으로)

  • Lee, Kyu Jin;Jang, Jeong Ah;Choi, Keechoo;Shim, Sang Woo
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.5
    • /
    • pp.421-430
    • /
    • 2014
  • The greenhouse gas emission generated by idling vehicles is a critical issue in the greenhouse gas reduction from the transportation sector. Recently, the mandatory application of the Idle Stop and Go (ISG) for buses, trucks and taxis is in the process of legislation. Focusing on the regulation is about to apply to passenger cars, this study analyzed the quantitative economic effects of the ISG installation by passenger car types in Seoul metropolitan area to support proper policy making. The benefit cost ratio of ISG installation on commercial passenger car of Seoul is the most effective, calculated as 8.55. Accordingly, the amount of 660 liters (per year per vehicle) of fuel and 1,606 kg (per year per vehicle) of $CO_2$ could be reduced. The results of this study might be used as an index for judgment of policy such as determining appropriate subsidy for ISG installation on passenger cars.

Impact assesment of zooplankton by turbine of tidal power plant in Uldolmok waterway, Korea (울돌목 해역에서 조류발전 시설 터빈 가동에 따른 동물플랑크톤의 피해 영향)

  • Yoo Jeong-kyu;Nam Eun-jung;Myung Chul-soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.507-511
    • /
    • 2005
  • 울돌목은 조류발전의 세계적인 최적지로 꼽히고 있으며 서해와 남해의 점이 지대로서 조류에 의해 해양 생물 군집의 대량 이동이 빈번한 곳이라 할 수 있다. 조류 발전 시설인 터빈의 가동은 물리적인 충격에 의해 해양 생물의 생태-생리 반응에 영향을 미칠 가능성이 있다. 네트를 이용한 1차 조사에서 터빈 가동에 의한 동물플랑크톤의 순 사망률은 $44.3\%$로 나타났다. 1차 조사 이 후 다이아프램 펌프를 이용한 조사 결과 중 출현 개체수가 높았던 조사에서 전체 동물플랑크톤의 순 사망률은 각각 $7.3\%,\;5.8\%$를 나타내었고, 요각류는 각각 $4.4\%,\;5.2\%$를 나타냈다. 물리적인 충격을 인위적으로 가한 실험에서 스트레스를 받은 요각류 Acartia hongi의 알 생산은 스트레스를 받지 않은 것보다 $1.8\~2.3$배 낮은 경향을 보였다. 본 조사에서 동물플랑크톤이 낮은 사망률을 보골 이유는 작은 크기의 생물이 우점하였기 때문이며 조사 결과에서 몸체가 비교적 단단하고 크기가 작은 요각류는 상대적으로 약한 부유유생보다 높은 생존율을 보였다. 울돌목 조사 해역에서 출현한 동물플랑크톤은 크기가 작아 터빈의 물리적인 충격에 의한 사망률은 낮을 수 있으나 순간적으로 강한 스트레스를 받는다면 재생산을 포함한 생리활동이 저하될 수 있음을 보였다. 네트 및 펌프를 이용한 조사 결과에서 네트에 의한 채집은 터빈의 영향뿐만 아니라 빠른 유속으로 인하여 네트가 받는 압력에 의해 생물체가 손상되는 양상이 높아 사망률이 높았던 것으로 보인다. 그러나 다이아프램 펌프는 생물 채집 시 오류를 최소화하는 장점은 있으나 채집의 장시간에 비해 매우 적은 생물량이 채집되는 단점을 보였다TEX>$96.5\%$에 미달하는 문제는 식물성 원료유로 제조한 고순도 바이오디젤과 혼합 사용하거나 감압 증류 공정을 통해 고농도의 폐식용유 바이오디젤을 제조하여 해결 가능하다. 대전시 신성동 소재의 음식점에서 수거한 폐식용유를 원료로 하여 생산한 바이오디젤의 차량 배출가스 실증 테스트 결과 경유 차량의 주 오염물질인 PM과 Soot 및 기타 오염물질의 배출량은 감소하였으나 NOx의 배출량은 약간 증가하는 것으로 나타났다구와 이해를 바탕으로 보존대책이 마련되어야 한다.되었다. 이런 모든 시편들을 각 탈염방법에 따라 탈염처리한 후 XRD와 SEM-EDS으로 분석한 결과 인철광과 침철광은 어떠한 변화도 보이지 않았고, 다만 적금광으로 동정된 시편만이 잔존하지 않았다. 철기 제작별 $Cl^-$ 이온 추출량과 탈염효과에 대한 비교 실험은 이온 크로마토그래피 분석 결과와 마찬가지로 단조 철제유물이 주조 철제보다 $Cl^-$ 이온을 많이 가지고 있었으며, 탈염 처리 후에는 $Cl^-$ 이온은 전혀 발견되지 않았다. 이상의 결과 $K_2CO_3$와 Sodium 용액은 탈염처리에서 가장 적합한 탈염처리 용액으로 알수가 있었으며 특히 어떠한 탈염 용액으로 유물을 처리한다 해도 철제유물에 생성된 부식물은 제거되지 않는다는 것을 알게 되었다. 따라서 보존처리자는 유물 표면의 부식 상태만을 보고 처리하기 보다는 철기제작물로 고려하여 처리하는 것이 필요하다. 또한 금속에 부식을 야기시키는 $Cl^-$ 이온과 부식물을 완전하게 제거하여 탈염처리를 하는 것이 유물 부식을 최대한 지연시킬 수 있는 것이라 생각된다.TEX>$88\%$)였다.(P=0.063). 결론: 본

  • PDF

The Research for effect of lubricant oil aging on environmental performance (자동차 윤활유의 성상 및 열화가 환경성에 미치는 영향 연구)

  • Kim, Jeong-Hwan;Kim, Ki-Ho;Ha, Jong-Han;Jin, Dong-Young;Myung, Cha-Lee;Jang, Jin-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.12-24
    • /
    • 2017
  • The main purpose of this research is for the investigation on the impact of engine oil aging on PM and DPF. It is widely known that lubricant specifications and consumption from an ICE have significantly influenced on the regulated and unregulated harmful emissions as the engine operating conditions. Considering DPF clogging phenomena with lubricant-derived soot/ash components, simulated aging mode for the DPF was newly designed for engine dynamometer testing. PM/ash accumulation cycle were developed in reflecting real-world engine operating conditions for the increment of engine oil consumption and natural DPF regeneration for the ash accumulation. The test duration for DPF aging reached around 100hrs with high- and low-SAPS engine oils, respectively. Using high SAPs engine oil made more PM/ash accumulation compared with low SAPs engine oils and it could accelerate fouling of EGR in engine. Fouling of EGR made effects on more harmful exhaust gases emissions. The test results on engine lubricant under engines operating conditions will deliver for the establishment of regulated and unregulated toxic emissions policy, lubricant quality standard.

Emission Reduction Characteristics of Three-way Catalyst with Engine Operating Condition Change in an Ultra-lean Gasoline Direct Injection Engine (초희박 직접분사식 가솔린 엔진용 삼원촉매의 운전조건에 따른 배기저감 특성)

  • Park, Cheol Woong;Lee, Sun Youp;Yi, Ui Hyung;Lee, Jang Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.727-734
    • /
    • 2015
  • Recently, because of the increased oil prices globally, there have been studies investigating the improvement of fuel-conversion efficiency in internal combustion engines. The improvements realized in thermal efficiency using lean combustion are essential because they enable us to realize higher thermal efficiency in gasoline engines because lean combustion leads to an increase in the heat-capacity ratio and a reduction of the combustion temperature. Gasoline direct injection (GDI) engines enable lean combustion by injecting fuel directly into the cylinder and controlling the combustion parameters precisely. However, the extension of the flammability limit and the stabilization of lean combustion are required for the commercialization of GDI engines. The reduction characteristics of three-way catalysts (TWC) for lean combustion engines are somewhat limited owing to the high excess air ratio and low exhaust gas temperature. Therefore, in the present study, we assess the reaction of exhaust gases and their production in terms of the development of efficient TWCs for lean-burn GDI engines at 2000 rpm / BMEP 2 bar operating conditions, which are frequently used when evaluating the fuel consumption in passenger vehicles. At the lean-combustion operating point, $NO_2$ was produced during combustion and the ratio of $NO_2$ increased, while that of $N_2O$ decreased as the excess air ratio increased.

Evaluation of the Impact of Fuel Economy by Each of Driving Modes for Medium-Size Low-Floor Bus (중형저상버스의 개별주행모드에 따른 연료소비율 평가)

  • Jung, Jae-wook;Ro, Yun-sik;Ahn, Byong-kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.133-140
    • /
    • 2016
  • The Ministry of Land, Infrastructure and Transport has introduced low-floor buses, which are convenient for passengers getting on and off the bus and for the handicapped. The standard bus model is 11 m long and uses compressed natural gas (CNG). However, this model has drawbacks in narrow rural road conditions such as those in farming and fishing villages and mountainous areas, as well as difficulty in refueling since CNG facilities are not readily available. In this study, running resistance values were obtained by coasting performance tests on actual roads using a Tata Daewoo LF-40 model with three different weight conditions: curb vehicle weight (CVW), half vehicle weight (HVW), and gross vehicle weight (GVW).The test methods include WHVC, NIER-06, and constant-speed driving at 60 km/h. These tests were used to measure the fuel economy of vehicles other than the target vehicles to obtain the combined fuel economy. The energy efficiency was highest in the case of CVW. In the WHVC mode, the fuel consumption rates of HVW and GVW were typically 3.5% and 12% higher than that of CVW, respectively. In constant-speed driving, the fuel efficiency of HVW was higher than that of CVW. Further research is required to analyze the exhaust gas data.

Fate Analysis and Impact Assessment for Vehicle Polycyclic Aromatic Hydrocarbons (PAHs) Emitted from Metropolitan City Using Multimedia Fugacity Model (다매체거동모델을 이용한 대도시 자동차 배출 Polycyclic Aromatic Hydrocarbons (PAHs) 거동 해석 및 영향평가)

  • Rhee, Gahee;Hwangbo, Soonho;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.479-495
    • /
    • 2018
  • This study was carried out to research the multimedia fate modeling, concentration distribution and impact assessment of polycyclic aromatic hydrocarbons (PAHs) emitted from automobiles, which are known as carcinogenic and mutation chemicals. The amount of emissions of PAHs was determined based on the census data of automobiles at a target S-city and emission factors of PAHs, where multimedia fugacity modeling was conducted by the restriction of PAHs transfer between air-soil at the impervious area. PAHs' Concentrations and their distributions at several environmental media were predicted by multimedia fugacity model (level III). The residual amounts and the distributions of PAHs through mass transfer of PAHs between environment media were used to assess the health risk of PAHs at unsteady state (level IV), where the sensitivity analyses of the model parameter of each variable were conducted based on Monte Carlo simulation. The experimental result at S-city showed that Fluoranthene among PAHs substances are the highest residual concentrations (60%, 53%, 32% and 34%) at all mediums (atmospheric, water, soil, sediment), respectively, where most of the PAHs were highly accumulated in the sediment media (more than 80%). A result of PAHs concentration changes in S-city over the past 34 years identified that PAHs emissions from all environmental media increased from 1983 to 2005 and decreased until 2016, where the emission of heavy-duty vehicle including truck revealed the largest contribution to the automotive emissions of PAHs at all environment media. The PAHs concentrations in soil and water for the last 34 years showed the less value than the legal standards of PAHs, but the PAHs in air exceeded the air quality standards from 1996 to 2016. The result of this study is expected to contribute the effective management and monitoring of toxic chemicals of PAHs at various environment media of Metropolitan city.

Experimental Verification of Adsorption Rate Feedback Control Strategy for Automotive Urea-SCR DeNOX System (실차 실험을 통한 승용 디젤엔진의 Urea-SCR을 위한 암모니아 흡장률 피드백 제어 분사전략 검증)

  • Shin, Byeonguk;Park, Jooyoung;Lee, Seang Wock;Kang, Yeonsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.397-407
    • /
    • 2017
  • In this study, a SCR system is employed to selectively reduce $NO_X$, which is a major cause of environmental pollution and issues in diesel engines. In particular, this paper focuses on the combination of feedforward injection strategies, depending on the NO/$NO_X$ ratio, and feedback injection control, using $NH_3$ coverage ratio, based on a SCR model. A 2.2 L passenger diesel engine, which is equipped with a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF), was used in the experiments. The developed control algorithm is implemented on a real-time computer with injection control algorithm. By analyzing the $NO_X$ emission measurement, the performance of the proposed injection control algorithm is verified.