• Title/Summary/Keyword: 차량방호안전시설

Search Result 21, Processing Time 0.02 seconds

A Study on the Performance Comparison of S2 type Bridge Rails (S2급 교량용 방호울타리의 성능비교 연구 (F형 콘크리트와 철재 교량용 방호울타리를 중심으로))

  • 정봉조;주재웅;이성관;장명순
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.2
    • /
    • pp.117-124
    • /
    • 2002
  • 새로 개발한 철재 교량용 방호울타리는 기존 시설에 비해 충격흡수기능과 조망권 확보, 융설작업, 유지보수가 용이하도록 설계되었다. 본 연구는 새로 개발한 철재 교량용 방호울타리를 건설교통부의 $\ulcorner$도로안전시설 설치 및 관리지침 - 교량용 방호울타리 편. 1999$\lrcorner$ 의 설계기준에 따라 기존 고속도로에 사용하고 있는 F형 콘크리트 교량용 방호울타리와 성능비교를 통해 평가하고자 하였다. 비교평가는 S2급 교량용 방호울타리의 시험기준으로 실시하였으며 결과는 다음과 같이 나타났다. 첫째, 소형승용차를 대상으로 한 운전자의 안전도 평가에서는 두가지 시설 모두 강도성능, 충돌 후 차량 안전성능 구성 부재 비산 억제 성능 등 세 가지 기준을 만족하였으나, 가속도 기준에 있어서는 철재 교량용 방호울타리는 기준인 20g 이하인 18.2605g로 나타나 안전기준을 만족하였고, F형 콘크리트 교량용 방호울타리는 20.1791g로 나타나 기준을 약간 상회하는 것으로 나타났으나 안전기준의 범위에 있는 것으로 평가하였다. 둘째. 대형차량을 대상으로 한 방호울타리의 구조적 안정성 평가에 있어서는 F형과 철재 교량용 방호울타리 모두 평가기준에 적합한 것으로 나타났다. 새로 개발한 철재 교량용 방호울타리는 국내 최초로 모의충돌시험과 실물차량 충돌시험을 통해 개발하였다는 의의를 가지고 있으며 성능측면에서도 기존의 시설에 비해 충분히 안전하다는 것을 증명하였다. 그러나 측정시설의 미비로 충돌후의 차량의 이탈속도나 이탈각도에 대하여 만족할 만한 수준의 결과를 제시하지는 못하였다.

Consideration on the Performance Evaluation Criteria & Test Data Analysis for the Roadside Safety Facilities (차량방호안전시설 성능평가기준 및 시험데이터 분석에 관한 고찰)

  • Lee, Changseok;Kim, Changhyun;Suk, Jusik;Kang, Byungdo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.55-60
    • /
    • 2014
  • To verify the performance of roadside safety facilities, strength and occupant protection test are performed by evaluation criteria. Strength test use a truck and occupant protection test use a sedan. Strength perfomance is analyzed pass rate by post lateral resistance of the safety barrier. Occupant protection performance is analyzed from THIV(Theoretical Head Impact Velocity) and PHD(Post-impact Head Deceleration) by crash cushion test.

Development of Guardrail End Treatment System using LS-DYNA (LS-DYNA를 이용한 차량방호울타리 단부처리 시설의 개발)

  • IN, Younggun;Shin, Kwanghee;Bae, Kihun
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.3
    • /
    • pp.279-285
    • /
    • 2016
  • Road sides safety barrier system is the last safety during traffic accident. The structural performance of a roadside safety barrier should be kept above expectations. It is possible to protect the passenger's life. End treatment part is installed in the end of the barrier it prevents a phenomenon in which for the vehicle for the guardrail during a vehicle collision it is facility of the absorbing of car crashed impact. By repeated analysis through computer simulation for improving the vehicle crash it will be able to develop crash barriers to respond appropriately to various parameters.

A Study on the Safety Performance of Roadside Barriers by Collision Analysis (방호울타리 안전성능에 관한 충돌해석 연구)

  • Lee, YounghHo;Song, Jae-Joon;Lee, Sang-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5558-5565
    • /
    • 2012
  • Roadside barriers are facility for preventing cars from out of path, and 7 classes of barrier are prescribed in criteria of road grades and speed limit, etc. However, overload and overspeed are increased according to improvement of vehicle performance, and falling over frequently occur in vehicle accident related in barriers. Therefore, enhancement of the existing design criteria of roadside barriers is demanded. In this research, vehicle crash simulation was carried out, and the condition for fracture of roadside barriers and vehicle overturn was evaluated in order to verify the defence performance of the barriers, which are SB5 steel barrier and SB6 concrete barrier adapted mainly to highway.

A Comparison of Concrete Median Barriers in terms of Safety Performance using Computer Simulation (컴퓨터 모의층돌시험을 통한 콘크리트 중앙분리대 방호울타리 형식별 성능비교 연구)

  • 정봉조;장명순
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.1
    • /
    • pp.115-125
    • /
    • 2003
  • The concrete median barriers are the most popular safety appurtenance that can be installed on narrow medians and are effective in keeping uncontrolled vehicles from crossing into opposing lanes of traffic. It is necessary to install and maintain median barriers because it is very difficult to reserve enough room required for medians in KOREA. Also, concrete median barriers are accepted as the actual alternatives for median barriers, mostly because they require almost no maintenance even after serious collisions. Typical concrete median barriers are 810mm high and have 596mm high glare screens on top of them. However we have experienced a number of "climb" and "roll-over" accidents of heavy vehicles and most of all, there have been some serious accidents caused by the part of broken glare screens. So the improvement study of concrete median barriers started. Prior to this study, a new type of concrete median barrier was suggested which is 1,270mm high and has no glare screens on top of it. So it was required to compare the properties of various types of concrete median barriers including the new type to find the optimal type of concrete median barrier. In this study, we have evaluated the characteristics of four types of concrete median barriers (New Jersey type, F type, constant slope type, and wall type). We have performed many computer simulations for the evaluation of the crashworthiness of them, and through the simulations we have tried to find a proper type of concrete median barrier. Through the computer simulations, we evaluated the structural stability and safety of the four types of concrete median barriers. We confirmed the structural stability and safety of them But in regard to the probability of "roll-over" of heavy vehicles, the higher concrete median barriers showed better performances than the lower. As the result of this study a new type of concrete median barrier was recommended.