• Title/Summary/Keyword: 차량기밀유지

Search Result 8, Processing Time 0.024 seconds

A Design of Certificate-based Encryption System for Maintaining ECU Security (ECU 보안성 유지를 위한 인증서 기반 암호시스템 설계)

  • Yoo, Joseph;Kim, Keecheon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.242-245
    • /
    • 2017
  • 기존의 엔진제어기(ECU)는 주요 mapping data(ECU에 대응되는 값)들에 대해서 기밀성과 무결성을 제공하는 보호 기법의 부재로 인해 임의적인 튜닝이 가능하다는 특징이 존재하였다. 이로 인해 자칫 잘못된 튜닝이나 악의적인 조작이 발생할 수 있는 여지가 있으며, 이는 차량 엔진 및 조작의 안정성을 떨어뜨림과 동시에 운전자 및 보행자들의 안전을 위협할 수 있다는 문제가 있다. 이에 본 논문에서는 ECU에 적용되는 Firmware의 주요 mapping data를 안전하게 암호화하는 방식을 제안하며, 이 과정에서는 차량의 식별 및 ECU에 mapping 되는 data의 무결성 검증을 위해 인증서를 사용하는 방식을 제안한다. 본 논문의 제안을 통해 주요 mapping data를 안전하게 보호하는 기술을 통해 차량의 안전성을 유지할 수 있다.

A Study on the Decrease of Pressure in Truck Cabin With Closing Door (도어 닫힘에 따른 차실내압 저감에 관한 연구)

  • Kim N. H.;Rho B. J.;Kim W. T.;Namkung J. W.;Lee S. J.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.667-670
    • /
    • 2002
  • Vehicle's airtight integrity is a very important factor that greatly affects passenger's habitability. However, when a door is closed, the pressure in the passenger compartment increases due to the vehicle's airtight integrity. That pressurizes the eardrums of the passenger, and makes passenger unpleasant. Thus, in this study, the configurations of air ventilation hasve been investigated to reduce pressure in the passenger compartment. Truck cab is utilized to measure the pressure in the passenger compartment. Various kinds of air ventilations are considered to find out optimized pressure in truck cab when a door is closed.

  • PDF

A Study on the Noise Characteristics of Subway Train (도시철도 전동차 소음 특성에 관한 연구)

  • Choi, Yong-Woon;Koo, Jeong-Seo;You, Won-Hee;Koh, Hyo-In
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.329-334
    • /
    • 2009
  • Subway is used as a useful transportation method to solve the metropolitan traffic problem for its advantages of being not only accurate, safe and massive, but also of not producing any exhaustion gas in compare with the other ground transportation systems. However, noise inside the car due to concrete based rail track and tunnel structure has become a social problem. So, an analysis on the noise characteristics according to their routes and locations was made on the basis of the actually measured results from the trial run. To reduce the interior noise of subway train, the side part of rolling stock should have a noise blocking system fur low band frequency noise, the floor of it should have that for medium range frequency noise and the side part as well as lower part of it should have good noise reduction and absorption function.

Analysis and Investigation of International(UIC, EN, IEC) and Domestic Standards(Test Methods) for Climatic Wind Tunnel Test of Rolling Stock (철도차량 기후환경시험을 위한 국제 규격(UIC, EN, IEC) 및 국내 규격(시험방법) 분석 및 고찰)

  • Jang, Yong-Jun;Chung, Jong-Duk;Lee, Jae-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.782-789
    • /
    • 2020
  • The demand for the development of rolling stock technology to maintain the best performance in various climatic environments has increased to expand the overseas market of rolling stock. In this study, international and domestic standards that must be applied to build a harsh climatic environment test system were investigated and compared. The way of improvement for domestic standards is proposed. The wind velocities and temperatures are specified in the UIC, EN, and IEC standards for climatic wind tunnel, and EN 50125-1 provides the velocity test up to 180km/h, the largest wind speed. UIC and EN provide the lowest temperature of -45℃, and IEC 62498-1 provides the highest temperature 55℃. The solar radiation test was specified up to 1200W/m2 in the UIC, EN, and IEC. The IEC, EN, and KS R 9145 provide the water tightness standards, which are different from each other in water capacity, pressure, and methods. The snow test method was not well specified. KRTS-VE-Part 31 provides pressurization test methods. The airtightness standards for high-speed rolling stock are defined and regulated for internal pressure change rate in UIC 660 and 779-11. The domestic standard for the wind tunnel test was not well prepared, and the solar radiation test and snow test do not exist in Korea. Therefore, it is necessary to improve domestic standards to an international level for the climatic wind tunnel test of rolling stock.

Optimal Design of Gangway Connections for the High Speed Railway Vehicle (고속철도차량 갱웨이 통로연결막의 최적설계)

  • Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4087-4092
    • /
    • 2014
  • The gangway connection of the articulated high speed railway vehicles (HSRV) is a double wrinkled rubber component to seal the air of the corridor under a range of angular deviations between the carriage end parts. From the results of non-linear structural analysis, one of the severe loading conditions for the connection is mixed mode (rolling+yawing) angular displacements while passing through the small-radius curved siding track of the HSRV depot. In this study, to ensure the safety enhancement of the component, the optimal design for the cross section of that was performed using the Solid Isotropic Material with Penalization (SIMP) method. Nonlinear finite element analysis confirmed that the decreases in the maximum principal strain of the optimized design under rolling and mixed modes are 68% and 39%, respectively, compared to the initial design.

A Leak Inspection Automation System for Sealed SUS CAN Rotor (밀폐형 SUS CAN Rotor를 위한 Leak 검사 자동화 시스템)

  • Choi, Chang-min;Seo, Su-min;Shin, Gi-su;Park, Jong-won;Jung, Yeon-seok;Yoo, Nam-hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.406-408
    • /
    • 2019
  • The motor applied to electric water pump used in automobiles is the canned type motor structure. The rotor, which is the driving component of the motor, is located in the bulkhead structure of the plastic injection molding, and rotates while immersed in the antifreeze. Plastic Injection Stator is placed on the outside of the bulkhead structure so that the rotor can rotate. The configuration of the rotor consists of magnet, core and shaft. In the case of magnet and core, it is very important to keep the parts sealed because it is a material that is corroded by moisture. When mounted on a vehicle, it must be capable of driving at $120^{\circ}C$ ambient conditions and should not leak under pressure of 1 bar or more. In this paper, we designed and implemented a Leak inspection automation system using helium to check the defects of the electric water pump developed satisfying this condition.

  • PDF

Development of Optimization Code of Type 3 Composite Pressure Vessels Using Semi-geodesic algorithm (준측지궤적 알고리즘을 이용한 타입 3 복합재 압력용기의 최적설계 프로그램 개발)

  • Kang, Sang-Guk;Kim, Myung-Gon;Kim, Cheol-Ung;Kim, Chun-Gon
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Composite vessels for high pressure gas storage are commonly used these days because of their competitive weight reduction ability maintaining strong mechanical properties. To supplement permeability of composite under high pressure, it is usually lined by metal, which is called a Type 3 vessel. However, it has many difficulties to design the Type 3 vessel because of its complex geometry, fabrication process variables, etc. In this study, therefore, GUI (graphic user interface) optimal design code for Type 3 vessels was developed based on semi-geodesic algorithm in which various factors of geometry and fabrication variables are considered and genetic algorithm for optimization. In addition, hydrogen vessels for 350/700 bar that can be applied to FCVs(fuel cell vehicles) were designed using this code for verification.

A comparative study of field measurements of the pressure wave with analytical aerodynamic model for the high speed train in tunnels (고속철도 터널내 압력파 측정과 공기압 해석모델에 대한 기초연구)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Hong, Yoo-Jung;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.319-332
    • /
    • 2015
  • The pressure wave formed by the piston effects of the train proceeds within the tunnel when a train enters the tunnel with a high speed. Depending on the condition of tunnel exit, the compression waves reflect at a open end, change to the expansion waves, transfer to tunnel entrance back. Due to interference in the pressure waves and running train, passengers experience severe pressure fluctuations. And these pressure waves result in energy loss, noise, vibration, as well as in the passengers' ears. In this study, we performed comparison between numerical analysis and field experiments about the characteristics of the pressure waves transport in tunnel that appears when the train enter a tunnel and the variation of pressure penetrating into the train staterooms according to blockage ratio of train. In addition, a comparative study was carried out with the ThermoTun program to examine the applicability of the compressible 1-D model(based on the Method of Characteristics). Furthermore examination for the adequacy of the governing equations analysis based on compressible 1-D numerical model by Baron was examined.