• Title/Summary/Keyword: 차량간통신

Search Result 807, Processing Time 0.03 seconds

Effects of Inter-Vehicle Information Propagation on Chain Collision Accidents (차량간 정보전파의 연쇄추돌 교통사고에 대한 효과)

  • Chang, Hyun-ho;Yoon, Byoung-jo;Jeong, So-Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.303-310
    • /
    • 2018
  • One of most shocking headlines is a serious chain collision accident (CCA). The development of CCA has a temporal and spatial locality, and the information of the CCA is time-critical. Due to these characteristics of CCA, traffic accident information should be rapidly propagated to drivers in order to reduce chain collisions, right after the first accident occurs. Inter-vehicle communication (IVC) based on ad-hoc communication is one of promising alternatives for locally urgent information propagation. Despite this potential of IVC, research for the effects of IVC on the reduction of CCA has not been reported so far. Therefore, this study develops the parallel platform of microscopic vehicle and IVC communication simulators and then analyses the effects of IVC on the reduction of the second collision related to a series of vehicles. To demonstrate the potential of the IVC-based propagation of urgent traffic accident information for the reduction of CCA, the reduction of approaching-vehicle speed, the propagation speed of accident information, and then the reduction of CCA were analysed, respectively, according to scenarios of combination of market rates and traffic volumes. The analysis results showed that CCA can be effectively reduced to 40~60% and 80~82% at the penetration rates of 10% and 50%, respectively.

Packet Transmission Scheme for Collecting Traffic Information based on Vehicle Speed in u-TSN system (u-TSN 시스템의 교통정보 수집을 위한 차량 이동속도에 따른 패킷 전송 방안)

  • Bae, Jeong-Kyu;Han, Dong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.6
    • /
    • pp.35-41
    • /
    • 2010
  • The ubiquitous-transportation sensor network (u-TSN) system is a next generation transportation system that provides traffic information through analysis and processing periodic information from vehicles. In this paper, we propose the adequate transmission scheme from vehicles for collecting vehicular information. The conventional scheme is transmitting each vehicle information every 0.1s. A variable transmission period scheme is proposed in this paper according to vehicle speed. The proposed and conventional schemes are compared with computer simulations.

Cost-effective Sensor-based Scalable Automated Conveyance System (저비용 센서 기반의 확장 가능한 자동 운반 시스템)

  • Kim, Junsik;Jung, Woosoon;Lee, Hyung Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • The important goal of the unmanned vehicle technology is on controlling the direction and speed of the vehicle with information acquired from various sensors, without the intervention of the driver, until the vehicle reaches to its destination. In this paper, our focus is on developing an unmanned conveyance system by exploiting low-cost sensing technology for indoor factories or warehouses, where the moving range of the vehicle is limited. To this end, we propose an architecture of a scalable automated conveyance system. Our proposed system includes a number of unmanned conveyance vehicles, and the efficient control mechanism of the vehicles without neither conflicts nor deadlock between the vehicles being simultaneously moved. By implementing the real prototype of the system, we successfully verify the efficiency and functionality of the proposed system.

Performance Analysis of GeoRouting Protocol in Vehicle Communication Environment (차량 통신 환경에서GeoRouting 프로토콜 성능 분석)

  • An, Sung-Chan;Lee, Joo-Young;Jung, Jae-Il
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.427-434
    • /
    • 2014
  • The Multihop Routing of vehicle communication environment is difficult to maintain due to heavy fluctuation of network topology and routing channel according to the movement of the vehicle, road property, vehicle distribution. We implemented GeoNetworking on the basis of ETSI(European Telecommunication Standard Institute) to maintain the vehicle safety service. GeoNetworking has its own way that delivers the data through the Unicast and Broadcast. In this paper, we compared performance index such as packet delivery ratio, end-to-end delay about GeoNetworking using the QualNet Network Simulator. Previous research assessed performance of GeoUnicast. This research has been additionally performed about GeoBroadcast, and we progressed algorithm performance through the comparison of CBF(Contention based Forwarding) of GeoUnicast with Greedy forwarding of GeoBroadcast.

Reduced RSU-dependency Authentication Protocol to Enhance Vehicle Privacy in VANET (VANET에서 RSU의 의존성을 줄이고 차량의 프라이버시를 강화한 인증 프로토콜)

  • Rhim, Won-Woo;Kim, Jong-Sik;Kim, Sang-Jin;Oh, Hee-Kuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.21-34
    • /
    • 2011
  • VANET offers variety of services to allow safe and comfortable driving through V2V and V2I communications in transportation systems. To use these services, safe and reliable V2V and V2I communications must be guaranteed. In this regards, many RSU-based studies have been carried out to meet certain issues such as: efficiency of frequent communication between RSU and vehicles, security of stored information in RSU, and invasion on vehicle's privacy. In this paper, a scheme is proposed to reduce the dependency on RSU and to enhance the vehicle privacy by using signature-based authentication protocol. The proposed protocol is more efficient than existing protocol with group signature, and satisfies all the requirements of VANET.

Implementation of Telematics System Using Driving Pattern Detection Algorithm (운전패턴 검출 알고리즘을 적응한 텔레매틱스 단말기 구현)

  • Kin, Gi-Seok;Jung, Hee-Seok;Yun, Kee-Bang;Jeong, Kyung-Hoon;Kim, Ki-Doo
    • 전자공학회논문지 IE
    • /
    • v.45 no.4
    • /
    • pp.33-41
    • /
    • 2008
  • Telematics system includes the "vehicle remote diagnosis technology", "driving pattern analysis technology" which are commercially attractive in the real life. To implement those technologies, we need vehicle signal interface, vehicle diagnosis interface, accelerometer/yaw-rate sensor interface, GPS data processing, driving pattern analysis, and CDMA data processing technique. Based on these technologies, we analyze the error existence by diagnosing the EMS(Engine Management System), TMS(Transmission Management System), ABS/TCS, A/BAG in real time. And we are checking about a driving pattern and management of the vehicle, which are sent to the information center through the wireless communication. These database results will make the efficient vehicle and driver management possible. We show the effectiveness of our results by field driving test after completing the H/W & S/W design and implementation for vehicle remote diagnosis and driving pattern analysis.

A Message Authentication and Key Distribution Mechanism Secure Against CAN bus Attack (CAN 버스 공격에 안전한 메시지 인증 및 키 분배 메커니즘)

  • Cho, A-Ram;Jo, Hyo Jin;Woo, Samuel;Son, Young Dong;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.5
    • /
    • pp.1057-1068
    • /
    • 2012
  • According to advance on vehicle technology, many kinds of ECU(Electronic Control Unit) are equipped inside the vehicle. In-vehicle communication among ECUs is performed through CAN(Controller Area Networks). CAN have high reliability. However, it has many vulnerabilities because there is not any security mechanism for CAN. Recently, many papers proposed attacks of in-vehicle communication by using these vulnerabilities. In this paper, we propose an wireless attack model using a mobile radio communication network. We propose a secure authentication mechanism for in-vehicle network communication that assure confidentiality and integrity of data packets and also protect in-vehicle communication from the replay attack.

A Study on the automatic vehicle monitoring system based on computer vision technology (컴퓨터 비전 기술을 기반으로 한 자동 차량 감시 시스템 연구)

  • Cheong, Ha-Young;Choi, Chong-Hwan;Choi, Young-Gyu;Kim, Hyon-Yul;Kim, Tae-Woo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.2
    • /
    • pp.133-140
    • /
    • 2017
  • In this paper, we has proposed an automatic vehicle monitoring system based on computer vision technology. The real-time display system has displayed a system that can be performed in automatic monitoring and control while meeting the essential requirements of ITS. Another advantage has that for a powerful vehicle tracking, the main obstacle handing system, which has the shadow tracking of moving objects. In order to obtain all kinds of information from the tracked vehicle image, the vehicle must be clearly displayed on the surveillance screen. Over time, it's necessary to precisely control the vehicle, and a three-dimensional model-based approach has been also necessary. In general, each type of vehicle has represented by the skeleton of the object or wire frame model, and the trajectory of the vehicle can be measured with high precision in a 3D-based manner even if the system has not running in real time. In this paper, we has applied on segmentation method to vehicle, background, and shadow. The validity of the low level vehicle control tracker was also detected through speed tracking of the speeding car. In conclusion, we intended to improve the improved tracking method in the tracking control system and to develop the highway monitoring and control system.

An Enhanced Greedy Message Forwarding Protocol for Increasing Reliability of Mobile Inter-Vehicle Communication (이동하는 차량 간 통신의 신뢰성 향상을 위한 개선된 탐욕 메시지 포워딩 프로토콜)

  • Ryu, Min-Woo;Cha, Si-Ho;Cho, Kuk-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.4
    • /
    • pp.43-50
    • /
    • 2010
  • Vehicle-to-Vehicle (V2V) is a special type of vehicle ad-hoc network (VANET), and known as a solution to provide communication among vehicles and reduce vehicle accidents. Geographical routing protocols as Greedy Perimeter Sateless Routing (GPSR) are very suitable for the V2V communication due to special characters of highway and device for vehicles. However, the GPSR has problem that appears local maximum by some stale neighbor nodes in the greedy mode of the GPSR. It can lose transmission data in recovery mode, even if the problem is can be solved by the recovery mode of the GPSR. We therefore propose a Greedy Perimeter Reliable Routing (GPRR), can provide more reliable data transmission, to resolve the GPSR problem in the V2V environment. Simulation results using ns-2 shown that the GPRR reveals much better performance than the GPSR by remarkably reducing the local maximum rate in the greedy mode.

Vision-based Real-time Vehicle Detection and Tracking Algorithm for Forward Collision Warning (전방 추돌 경보를 위한 영상 기반 실시간 차량 검출 및 추적 알고리즘)

  • Hong, Sunghoon;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.962-970
    • /
    • 2021
  • The cause of the majority of vehicle accidents is a safety issue due to the driver's inattention, such as drowsy driving. A forward collision warning system (FCWS) can significantly reduce the number and severity of accidents by detecting the risk of collision with vehicles in front and providing an advanced warning signal to the driver. This paper describes a low power embedded system based FCWS for safety. The algorithm computes time to collision (TTC) through detection, tracking, distance calculation for the vehicle ahead and current vehicle speed information with a single camera. Additionally, in order to operate in real time even in a low-performance embedded system, an optimization technique in the program with high and low levels will be introduced. The system has been tested through the driving video of the vehicle in the embedded system. As a result of using the optimization technique, the execution time was about 170 times faster than that when using the previous non-optimized process.